
Saeed Esmaili notes archive photos

Building a Personal Content
Recommendation System, Part Two: Data
Processing and Cleaning
2025-03-26 · 5 min · Saeed Esmaili

In part one of this blog series , I explored the motivation behind developing a
personal recommendation system. The main goals are to learn how
recommendation systems work and to build a tool that helps me find interesting blog
posts and articles from feeds where only 1 in 20 posts might match my content
interests.

If you are interested in the technical implementation, the complete codebase is
available in this github repository .

Creating an Articles Dataset

Step 1: Initial List of Liked Articles

Daily browsing of RSS feeds involves scanning through many articles, where
sometimes engaging titles lead me to read their opening paragraphs. Through my
established content workflow , I save interesting items to Pocket using Inoreader’s
built-in feature.

Initially, I planned to use a list of RSS items that I had clicked on. However, Inoreader
doesn’t provide an API to access this reading history, which led me to explore other
options.

https://saeedesmaili.com/
https://saeedesmaili.com/notes/
https://saeedesmaili.com/archive/
https://saeedesmaili.com/photos/
https://saeedesmaili.com/posts/building-a-content-recommendation-system-for-myself-part-one/
https://github.com/saeedesmaili/content-recommendation
https://saeedesmaili.com/posts/my-content-consumption-workflow/
https://saeedesmaili.com/posts/my-content-consumption-workflow/

My RSS-based Content Consumption Workflow

Looking further into my workflow, I found a better solution: my archived items in
Pocket. While I regularly read through my Pocket items, I never delete them - just
archive them. This gave me a valuable collection of reading history.

Using the Pocket API , I retrieved around 4,000 URLs, dating back to December 2022.
Though some archived items might be less relevant now, the dataset reflects my
reading interests well. Later, I could add features like upvoting and downvoting to
refine the content selection, but that’s beyond the current scope.

Each item in the dataset includes this basic information:

Step 2: Text Content of Articles

To build an effective recommendation model, we need the actual content of each
URL, not just its metadata, but unfortunately Pocket doesn’t provide that. While I love
writing scrapers, for this project I want to focus on developing the recommendation
model itself.

{

 "pocket_item_id": 5598506,

 "given_url": "https://nat.org/",

 "resolved_url": "http://nat.org/",

 "title": "Nat Friedman",

 "time_added": 1736940058,

 "word_count": 451,

 "domain": "nat.org"

}

https://getpocket.com/developer/docs/v3/retrieve

The Jina Reader API offers a straightforward solution, converting webpage content
into markdown format. Here’s an example of what we get (shortened version, full
content available here):

The converted content is excellent, but it has two main challenges:

1. Markdown formatting adds unnecessary complexity for our use case. Plain text
would work better.

2. Articles vary greatly in length - from short paragraphs to long essays - which could
make comparing them via semantic similarity difficult later.

Title: Nat Friedman

URL Source: https://nat.org/

Markdown Content:

I'm an investor, entrepreneur, developer.

Some things about me:

* Grew up in Charlottesville, VA

* On the Internet since 1991, which is my actual "home town"

* Went to MIT because I loved the Richard Feynman [autobiographies](https://www.am

* Started [two](https://en.wikipedia.org/wiki/Ximian) [companies](https://en.wikip

* CEO of [GitHub](https://github.com/) from 2018 through 2021

* Live in California

* Working on reading the [Herculaneum Papyri](https://scrollprize.org/)

* Tested 300 Bay Area foods for [plastic chemicals](https://plasticlist.org/)

Some things I believe:

...

https://jina.ai/reader/
https://r.jina.ai/https://nat.org/

Distribution of Documents Lengths (in Tokens)

Step 3: Summarizing the Markdown Content

To solve both issues at once, I used the gemini-2.0-flash model to create consistent-
length summaries of each document. Here’s an example summary for
https://nat.org/ :

By having the model to wrap summaries in XML tags (<summary> ... </summary>), I
achieved two things:

Clean extraction of just the summary text, in case LLM generates other texts
before or after the summary (e.g. if it starts with Sure, I can help you with

summarizing the content ...).

Easy identification of broken links and error pages. This helped remove 141
invalid entries, leaving me with 3,642 quality documents.

I'm an investor, entrepreneur, and developer who's been online since 1991, consideri

Fundamentally, I believe we have a right, perhaps a duty, to shape the universe to o

I also challenge the efficient market hypothesis, viewing it as a flawed heuristic,

The summaries created a more balanced distribution of text lengths:

Distribution of Summary Lengths (in Tokens)

Next Steps
The final dataset now contains well-organized entries with clean metadata and text
summaries:

Next week, I’ll work on creating a user profile by concatenating these text summaries
and metadata and converting them into vectors using Embedding models . I’m also

{

 "pocket_item_id": 5598506,

 "given_url": "https://nat.org/",

 "resolved_url": "http://nat.org/",

 "title": "Nat Friedman",

 "time_added": 1736940058,

 "word_count": 451,

 "domain": "nat.org",

 "text": "Title: Nat Friedman\n\nURL Source: https://nat.org/\n\nMarkdown Content:\

 "summary": "I'm an investor, entrepreneur, and developer who's been online since 1

}

https://saeedesmaili.com/how-to-use-sentencetransformers-to-generate-text-embeddings-locally/

© 2025 Saeed Esmaili · Powered by Hugo & PaperMod

researching how modern recommendation systems work with transformers and
LLMs, which will help guide this project. After all, learning is the main goal here.

I welcome any thoughts or questions about this series - feel free to reach out!

Comment? Reply via Email, Bluesky or Twitter.

Recommendation Systems Data Processing Data Cleaning LLM

Text Summarization Python Gemini Projects

Related Posts
Building a Personal Content Recommendation System, Part One: Introduction
Released a new tool: llm-url-markdown
Access Google Gemini LLM via OpenAI Python Library
Never Been Easier to Learn
Text Chunking and Headings Grouping: A Guide to Parsing Documents with Pandoc
and Python

Join the Newsletter

Subscribe to get the latest blog posts from me by email

Name

Email Address

Subscribe

https://saeedesmaili.com/
https://gohugo.io/
https://github.com/adityatelange/hugo-PaperMod/
mailto:me@saeedesmaili.com?subject=Re:%20Building%20a%20Personal%20Content%20Recommendation%20System%2c%20Part%20Two%3a%20Data%20Processing%20and%20Cleaning
https://bsky.app/profile/saeedesmaili.com
https://twitter.com/saeedesmaili
https://saeedesmaili.com/tags/recommendation-systems/
https://saeedesmaili.com/tags/data-processing/
https://saeedesmaili.com/tags/data-cleaning/
https://saeedesmaili.com/tags/llm/
https://saeedesmaili.com/tags/text-summarization/
https://saeedesmaili.com/tags/python/
https://saeedesmaili.com/tags/gemini/
https://saeedesmaili.com/tags/projects/
https://saeedesmaili.com/posts/building-a-content-recommendation-system-for-myself-part-one/
https://saeedesmaili.com/notes/released-a-new-tool-llm-url-markdown/
https://saeedesmaili.com/notes/access-google-gemini-llm-via-openai-python-library/
https://saeedesmaili.com/notes/never-been-easier-to-learn/
https://saeedesmaili.com/text-chunking-headings-grouping-parsing-documents-with-pandoc/
https://saeedesmaili.com/text-chunking-headings-grouping-parsing-documents-with-pandoc/

