
Michael Bang's blog RSS About 𝕏 🦋 in

29 Jun 2025

Tools I love: mise(-en-place)
tools cli mise

Once in a while you get introduced to a tool that instantly changes the way you work. For me,
mise is one of those tools.

mise is the logical conclusion to a lot of the meta-tooling that exists around language-specific
version and package managers like asdf, nvm, uv, pyenv etc. It makes it exceptionally easy to
install, use, and manage software. It also allows you to manage environment variables and
declare tasks (run commands).

Trying out new tools
The first step in getting an intuitive understanding of what mise can help you with is to use it to
install a tool. Pick your favorite and try it out; it supports a lot!

I recently read about jj in Thorsten Ball’s newsletter and decided to try it out (again). I crossed
my fingers and hoped that jj was one of the tools supported by mise and, to my delight, it was!
The process looked something like this:

$ jj

command_not_found_handler:5: command not found: jj

$ mise use jj

mise ~/projects/examples_mise/mise.toml tools: jj@0.30.0

$ jj version

jj 0.30.0

$ cd ..

$ jj version

command_not_found_handler:5: command not found: jj

$ cd eaxmples_mise

https://blog.vbang.dk/
https://blog.vbang.dk/feed.xml
https://blog.vbang.dk/about.html
https://x.com/micvbang
https://bsky.app/profile/micvbang.bsky.social
https://www.linkedin.com/in/micvbang/
https://blog.vbang.dk/tag/tools/
https://blog.vbang.dk/tag/cli/
https://blog.vbang.dk/tag/mise/
https://github.com/jdx/mise
https://asdf-vm.com/
https://github.com/nvm-sh/nvm
https://docs.astral.sh/uv/
https://github.com/pyenv/pyenv
https://mise.jdx.dev/environments/
https://mise.jdx.dev/tasks/
https://mise.jdx.dev/registry.html
https://registerspill.thorstenball.com/
https://mise.jdx.dev/registry.html

$ jj version

jj 0.30.0

As the above shows, with mise we’re just one command away from installing and trying out a
new tool, e.g. mise use jj.

In the above we that mise printed mise ~/projects/examples_mise/mise.toml tools:
jj@0.30.0. This tells us that mise has created (or updated) the mise configuration on that path.
We also see that if we cd out of ~/projects, the jj command is no longer available. If we cd
back into ~/projects/examples_mise, it becomes available again; unless you explicitly
install tools globally, mise will only make the tools available which are mentioned in a
mise.toml file on the path from your current directory to the root of your file system. That of
course means that we could potentially meet multiple mise.toml files when going back up to
the root of the file system. Mise handles this by concatting the configurations and overwriting
conflicting configurations, letting the file furthest down the tree win.

This is a clever design as it allows us to configure different versions of the same tool to be
available in different directories. Let’s have a look at what the mise.toml file looks like:

[tools]

jj = "latest"

If we want a specific version of jj to be installed in a specific directory, we just update the toml
file to say e.g. jj = "0.30.0.

Managing multiple versions of a tool
Let’s see what it looks like to use mise to manage Python versions for two projects with different
requirements:

 ~/projects/examples_python tree ✔ │ 16:58:51

.

├── project_new

│ └── mise.toml

└── project_old

 └── mise.toml

3 directories, 2 files

 ~/projects/examples_python let's see how mise helps us use the right version of python ✔ │ 16:58:52

 ~/projects/examples_python cat project_new/mise.toml INT ✘ │ 16:59:02

[tools]

python = "3.11"

$ tree

.

├── project_new

│ └── mise.toml

└── project_old

 └── mise.toml

$ cat project_new/mise.toml

[tools]

python = "3.11"

$ cat project_old/mise.toml

[tools]

python = "3.8"

$ cd project_new

$ python --version

Python 3.11.13

$ cd ../project_old

$ python --version

Python 3.8.20

When we cd into one of the directories listed above, mise automatically makes the version of the
tool configured in mise.toml available to us. If it isn’t already installed, mise will install it for us.
The implication of this is that you can commit a mise.toml to your repository, and anyone that
has mise installed will automatically get and use the expected dev tools when they enter the
project directory. And when it’s time to upgrade a dev tool, you can just update the version
number in mise.toml and everyone will start using the new version!

Use in CI/CD pipelines
The fact that mise makes tools available to you according to the mise.toml file in your current
working directory has further implications: it’s not just developer machines that can benefit from
using mise; CI/CD pipelines can benefit greatly as well! When you use mise in your pipelines,
you avoid the problem of having out of sync versions between developer and build machines.
You get to have a single place where you can configure the version of your dev tools everywhere!

As I mentioned in the beginning, besides managing dev tools, mise also allows you to declare
and run so-called tasks. Think of a task as an advanced invocation of a bash script. Even if we
use tasks as just plain bash scripts (they can do a lot more), it can be a major advantage to
declare common operations such as building, testing, linting etc. as mise tasks, since all
developers get access to them and will run their commands in exactly the same way every time.

https://mise.jdx.dev/tasks/toml-tasks.html
https://mise.jdx.dev/tasks/toml-tasks.html

If you’re diligent in your naming, you can even make the experience of building or testing across
projects identical.

The following are examples of some very simple Python-related tasks declared in mise.toml:

[tasks.install-deps]

run = ["uv pip install -r requirements.txt"]

[tasks.test]

run = ["pytest ."]

Adding this to mise.toml will make the commands mise install-deps and mise test
available. Again, if you check this in to your repo, the commands will be available to all
developers and pipelines. And reusing these names in your rust project means that you can use
the same commands to tell cargo to install your crates or run your tests.

Once you’ve declared your tasks you should of course also use them in your CI/CD pipeline.
Doing this makes you less dependent on the particular yaml syntax and arbitrary requirements of
your provider, and makes it easier to move to another one if you need to. It also ensures that
there’s a standard way to build and test your code, helping to further reduce the amount of “it
works on my machine”.

There’s a lot of depth to what you can use mise to help you automate. It’s a lovely tool and I hope
I’ve spiked your interest enough to give it a try!

Security concerns
Although this is a very obvious problem, I want to make it explicit: a major concern of all software
dependency management is control of your supply chain; how easy is it for somebody to insert
malicious code into a binary you will run hugely impacts the integrity of your systems and data.
Depending on your industry, it might not be feasible to use mise as it’s pretty opaque where your
dependencies will be downloaded from.

Michael Bang
@micvbang · Follow

I'm hoping to find the time to write a series of posts over
the summer on tools that I love. Here's the first one which
I fell in love with just 3 months ago: mise

blog.vbang.dk/2025/06/29/too…
6:02 PM · Jun 29, 2025

4 Reply Copy link

Read 1 reply

https://twitter.com/micvbang?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1939384107823137162%7Ctwgr%5E51e0a0e2e1eaf3c006d39fc4ccbbd4a1c64f1e1f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblog.vbang.dk%2F2025%2F06%2F29%2Ftools-i-love-mise%2F
https://twitter.com/micvbang?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1939384107823137162%7Ctwgr%5E51e0a0e2e1eaf3c006d39fc4ccbbd4a1c64f1e1f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblog.vbang.dk%2F2025%2F06%2F29%2Ftools-i-love-mise%2F
https://twitter.com/micvbang?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1939384107823137162%7Ctwgr%5E51e0a0e2e1eaf3c006d39fc4ccbbd4a1c64f1e1f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblog.vbang.dk%2F2025%2F06%2F29%2Ftools-i-love-mise%2F
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1939384107823137162%7Ctwgr%5E51e0a0e2e1eaf3c006d39fc4ccbbd4a1c64f1e1f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblog.vbang.dk%2F2025%2F06%2F29%2Ftools-i-love-mise%2F&screen_name=micvbang
https://twitter.com/micvbang/status/1939384107823137162?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1939384107823137162%7Ctwgr%5E51e0a0e2e1eaf3c006d39fc4ccbbd4a1c64f1e1f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblog.vbang.dk%2F2025%2F06%2F29%2Ftools-i-love-mise%2F
https://t.co/w6bqbekSnp
https://twitter.com/micvbang/status/1939384107823137162?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1939384107823137162%7Ctwgr%5E51e0a0e2e1eaf3c006d39fc4ccbbd4a1c64f1e1f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblog.vbang.dk%2F2025%2F06%2F29%2Ftools-i-love-mise%2F
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1939384107823137162%7Ctwgr%5E51e0a0e2e1eaf3c006d39fc4ccbbd4a1c64f1e1f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblog.vbang.dk%2F2025%2F06%2F29%2Ftools-i-love-mise%2F&tweet_id=1939384107823137162
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1939384107823137162%7Ctwgr%5E51e0a0e2e1eaf3c006d39fc4ccbbd4a1c64f1e1f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblog.vbang.dk%2F2025%2F06%2F29%2Ftools-i-love-mise%2F&in_reply_to=1939384107823137162
https://twitter.com/micvbang/status/1939384107823137162?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1939384107823137162%7Ctwgr%5E51e0a0e2e1eaf3c006d39fc4ccbbd4a1c64f1e1f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblog.vbang.dk%2F2025%2F06%2F29%2Ftools-i-love-mise%2F

