Linux Passkeys Update

An update on improving passkey support in Linux
2025-05-19

With the announcements from big companies at World Password Day about passkeys, |
thought | should share what I've been working on for passkey support on Linux. I've been
putting off writing this down because I've been busy with other things, but perhaps if |
write things out, other people will have a clearer idea of the work to do and can help where
| can't right now. This will be less polished than | would like, but hopefully it'll be good
enough for now and | can refine it later.

Table of Contents

e WebAuthn Overview

o State of Other WebAuthn Platforms
e State of Linux WebAuthn Platform
e Implementation Challenges/Needs
e Other hopes and dreams

e Resources

WebAuthn Overview

On and off for the past couple of years (has it been that long?), I've been working on a
FIDO2/WebAuthn platform API for passkeys. I'm assuming you're familiar with passkeys
and WebAuthn, if not, you can read Adam Langley's excellent "Tour of WebAuthn" for a
comprehensive summary of the WebAuthn API, or Trail of Bits' recent article as a shorter
overview of its security model.

WebAuthn Roles

Roughly, besides the user, there are 4 roles in WebAuthn transactions:

e relying party (website)

e client (browser or app)

e platform (may or may not be separate from the client)

e authenticator (may or may not be separate from the platform)

As an example, on Windows, say you're trying to login to Foo Store on https://example. com,
on Edge using a security key. In this situation, the relying party is Foo Store, identified by
the relying party ID (rpId) example.com, the client is Edge, and the authenticator is your
FIDO2 security key. But the platform is actually Windows Hello.

https://www.imperialviolet.org/tourofwebauthn/tourofwebauthn.html
https://blog.trailofbits.com/2025/05/14/the-cryptography-behind-passkeys/

Windows Hello is a platform?

You may be familiar with Windows Hello being the thing you use to sign into your computer
with a fingerprint, face ID or a PIN. It can authenticate you to your own device via these
methods, but it also has two other roles, what I'll call a WebAuthn platform APl and a
platform authenticator. As a platform API, Windows Hello mediates WebAuthn requests
from clients running on the OS (like browsers or Windows apps). This gives a uniform
interface for users to use passkeys on other authenticators, like a security key or
smartphone, which is great for usability. It also serves as a platform authenticator: it can
store WebAuthn credentials on the Windows machine and use them to sign WebAuthn
requests. This is built into the device (and maybe syncedl), so as long as you have access
to the device, you have access to your credentials, which is also good.

For the rest of this article, | will use "platform" to refer to the platform API, and will
specifically use "platform authenticator" for the internal authenticator provided by the
platform.

Trust boundaries between WebAuthn roles
A great security model to provide to users would be:

An authenticator will only sign a request for a relying party if the user requests
via the relying party's application that they want a signature for that relying
party.

The key phrase is the part "via the relying party's application": this is the crux of the
phishing resistance property of passkeys. Perhaps if the client, platform and authenticator
and Ul were all one packaged application, this would be easy. But since the authentication
request passes between multiple roles fulfilled by different processes, we must take steps
to make sure that the context of the user's request is propagated correctly.

Here is an overview of the flow the request must take:

1. The client receives challenge for an rpId's credential from RP from some origin. Client
passes challenge and origin to platform.

o Browsers derive origin through normal origin validation over HTTPS.

o Native apps (including apps on mobile OSes and macQS) verify the origin
through app IDs attested by developer and vendor signatures.

2. The platform verifies the client is legitimately calling this on behalf of a user.

o Android, iOS/iPadOS and macOS approximate this by instead designating
whether the app is trustworthy. Under normal circumstances, an app cannot run
if it is not verified by Google/Apple. If it can't run, it can't request a signature.
Easy! (This glosses over privileged system services.) These platforms also

require a permission in the signed app manifest that allows requesting
credentials for any origin (for browsers) or for specific origins bound to the app.

o Windows will collect the executable's path and any signed attributes at this time,
but unsigned executables may still invoke the platform API.

3. The platform verifies the rpId matches the origin.

o For browsers on desktop OSes, the WebAuthn API allows a 1:* relationship
between an rpId and a set of origins, using Related Origin Requests. This is
verified by the platform on some OSes, and by the browser in others.

o As mentioned above, Android and Apple OSes limit which apps are allowed to
request specific origins. Browsers are given unrestricted access. Other apps bind
the app's ID to the rpid via the app's signed manifest and a file served over
HTTPS on the origin(s) corresponding to the rpid. This also allows a 1:*
relationship between an rpid and valid origins.

4. The platform prompts the user to select an authenticator for rpiId.

o By now, the platform trusts that the rpid was delivered by a trusted client, and
should show the user that rp1d and relevant client information in the prompt. and
the rpId.

o The platform must make an effort to make this prompt unspoofable and disallow
concurrent requests to prevent user confusion.

5. The user verifies that the rpId is expected and selects an authenticator.

o The platform must verify that the user's response to the selection prompt came
from the platform's previous prompt.

6. The platform sends challenge to the selected authenticator.

o The platform/OS should ensure that authenticators are only accessible by the
platform, not random user processes, e.g. by filtering FIDO HID usages for USB,
Bluetooth service data for Bluetooth/hybrid, stored credentials for platform
authenticators, etc. from user processes.

7. The authenticator verifies that the user is present, then signs the challenge.

At this point, the signature is passed back up through platform and client to the RP. The RP
can verify the signature, and everybody's happy.

If we skip some of these steps, here's a few things that could go wrong:

e A web app served from a typo'd domain or an malicious app lookalike could request a
credential for the authentic app, and the authenticator would just sign it for the
malicious app.

e Any script could invoke the WebAuthn APl and start the flow, giving the attacker an
easy way to mount phishing attacks.

e A malicious process could send a request directly to an authenticator to sign,
bypassing the platform API, and somehow tricks the user into asserting user presence
(or just signing the data with the key directly, in the case of on-device credentials).

e An attacker could show a prompt that looks like a normal WebAuthn credential
request, but sends a challenge for a different origin than displayed in the prompt.

Some features this requires:

e application identity: the OS has to be able to provide the platform with the application
identity so that it can make policy decisions about which rpId/origin

e remote lookup of origin bindings: the platform must make calls out to external sites to
match bindings.

e unspoofable Ul: the user has to be able to trust the Ul prompt

e exclusive access to authenticators: since policy checks are implemented in the
platform, credentials can only be secure if requests are mediated by the platform.

State of Other WebAuthn Platforms

Windows, macOS/iOS and Android all have platform APIs and platform authenticators. This
wasn't always the case, though. The OS vendors took a little while to implement native
platform support, so in order to bootstrap the passkey ecosystem, browsers took on both
the client and the platform [API] roles. Chrome and Firefox used OS APIs to directly connect
to security keys over USB, and later Chrome added support for Bluetooth and
"hybrid"/smartphone devices and even internal passkeys secured by biometrics. As the OS
vendors added more features, the browsers deferred more responsibility for handling
WebAuthn requests to the OS.

This is a subset of features? that are provided in the Windows, macOS, i0S/iPadOS, and
Android platforms:

e Save passkeys on the device platform authenticator (perhaps syncing to other
devices)

e Handle "cross-platform" authenticators over different transports (USB, BLE, NFC?, and
hybrid/caBLE)

e Third-party passkey providers (Windows in beta)

e App-Origin binding (not on Windows)

» Related origin requests (ChromeOS and iOS/iPadQOS only?)

This is great! Users get a unified experience on their device across browsers and appsi,
perhaps with backups enabled, and browsers benefit from not having to do that work
themselves.

State of Linux WebAuthn Platform

Current State

However, in Linux-land, things aren't so great. Chrome still has the internal WebAuthn
request handling code built-in, so Chrome/Chromium users on Linux can still use many
different types of authenticators, but Firefox has only implemented USB so far. So Linux
users may have to decide between using their preferred browser, or having access to their
accounts, which is not a great position. (Password managers that support passkeys using
browser extensions give more user choice, but we'll get to that in a minute.)

Besides that, many Linux distros are leaning into sandboxed applications, whether using
Flatpaks, Snaps or other sandboxing technology. But in order for browsers to provide FIDO2
authenticator support, they have to have raw access to devices, which kinda blows a huge
hole in the sandbox. It would be great if we could close that hole.

There is not a platform authenticator to speak of on Linux, so users cannot create device-
bound passkeys, even though the hardware (TPM) to do so is common in modern devices.

As for syncing passkeys, users must use Google Password Manager built into Chrome, or a
password manager extension. | think this is satisfactory for user choice, but not for user
experience. When using a password manager extension, the website, browser and
extension all kind of "fight" for the Ul, which can be confusing. More than that, extensions
require a lot of privilege in order to inject their scripts for filling passkeys/passwords into
the web page, which can introduce vulnerabilities. While some password manager vendors

handle this privilege with care, not all of them are equal. Having these APIs built into the
browser can remove some of the security concerns around browser extensions.

What We're Doing About It

When | began working on this, | was inspired by previous work by Daiko Ueno and Norbert
Pocs and Alfie Fresta. Alfie had started building a library to interact with authenticators
over different transports, but there was not yet a common API for browsers and apps to
call the library. On Linux desktops, "portals” are the common way to provide an APl with
fine-grained access. So | set out to design a portal API that used his library. It has been
only on free nights and weekends, where my brain is mush, but the structure is slowly
starting to form.

In early 2024, Alfie reached out to me if | wanted to collaborate, and we did. We joined
with Martin Sirringhaus, who worked on the WebAuthn authenticator library used in Firefox
and is being sponsored by SUSE to work on this project, which is hosted at
https://github.com/linux-credentials.

(We had hoped to make some more progress more quickly on the portal with funding from
an open source grant, but unfortunately, the funding fell through. If you know of anyone
willing to sponsor development on this work, let me know!)

https://lock.cmpxchg8b.com/passmgrs.html
https://blogs.gnome.org/dueno/bringing-fido2-device-support-to-sandboxes/
https://blogs.gnome.org/dueno/bringing-fido2-device-support-to-sandboxes/
https://alfioemanuele.io/dev/2024/01/31/a-vision-for-passkeys-on-the-linux-desktop.html
https://flatpak.github.io/xdg-desktop-portal/
https://github.com/msirringhaus
https://github.com/linux-credentials
https://www.iinuwa.xyz/#contact-me

Architecture proposal

Here are some features we want to build:

e USB authenticator support (done)

e caBLE/hybrid authenticator support (in-progress)

e native Firefox integration

e An API for third-party passkey providers to hook into the passkey selection Ul, similar
to the settings available in Android, Apple, and soon in Windows.

e A platform authenticator

So far, we have wired up USB authenticator support and are in process of adding
hybrid/caBLE support. (Shhh! Don't tell any, but we are testing this integration in Firefox
with a web extension &). We'll have a native Firefox integration by the end of this.) After
that, we will work on productionizing the service, splitting it into multiple components
connected via D-Bus IPC, each of which are sandboxed using systemd and Landlock
security features. We also will provide SELinux/AppArmor policies to protect credential and
configuration files needed to run the service.

a \ (WebAuthn AP \

Browser }[D-Bus service J

k _J % usB l«o.noﬂer]
caBLE
handler

_6' BLE l«anouer]
P!n‘GForm h

auﬂ«ent‘ucatog

N

ﬁaﬁgin checker
J

\— J

A picture of IPC architecure of Linux WebAuthn Platform API. A browser or app
calls the main API process over D-Bus, which handles different parts of the
request by passing data to sandboxed child components.

sandboxed IPC

You may ask, "Why split this up into so many processes?" There are a two main reasons:
First, to contain vulnerabilities. Processes provide address space boundaries. Address
space protections, SELinux, AppArmor and Landlock LSMs all work at the process
boundary. Splitting the main D-Bus service, platform authenticator, authenticator I/0O, etc.
into separate processes allows us to give each of them the least privilege necessary. For
example, if the USB I/O handler crashes due to a malicious or buggy authenticator, it can
just die and be restarted, and it couldn't be used to read the secrets used by the platform
authenticator.

The second reason is that it makes it easier to execute off some of the functionality
needed for the platform authenticator inside a TEE, which | will explain in the kernel
protection section below.

Implementation challenges/needs

Origin Checking, or lack thereof

I've been mentioning origin checking as an important authorization policy that provides
phishing resistance for WebAuthn credentials. The other implementations (Apple and
Android OSes) rely heavily on being able to evaluate application identity at runtime, which
they can do because pretty much all user-level software is vetted to some degree, signed
and verified. Unfortunately, | can't think of a good way to do this with Linux desktop OS
capabilities. A recent comment on Lobsters stated this well:

One of the problems with today’s computers is that they are using
abstractions designed for coarse-grained isolation of users to enforce fine-
grained isolation of things owned by one user. | do want an environment where
everything from the kernel on up can be modified by the user, but not one

where it can be modified by any piece of software that the user starts.

Linux has very little to no code signing, at least not in a way that is available to the kernel
so we can make policy decisions on it. However, Linux distributions are largely based on
package managers, which check the integrity of packages on install. This means that the
user is already trusting the official repos configured in their package manager: why not
reuse those same signatures at runtime?

| think we're on the way: the upcoming Integrity Digest Cache (formerly DIGLIM) feature in
the Linux kernel provides a way for package managers to integrate package signatures

into LSM policies. This gets us part of the way there. A naive example of how this could be
used is: when the platform API receives a request, it can use the D-Bus caller PID to find its

executable, verify that its signature is valid according to the package manager 4, and then
look up the package name of the executable, and use the package name somehow for
whitelisting certain applications or mapping them to origins. This, of course, would only

https://lobste.rs/s/plkdy5/classical_single_user_computers_were#c_bvpei3
https://lore.kernel.org/linux-integrity/20240209140917.846878-3-roberto.sassu@huaweicloud.com/#r

work for packaged applications; we'd need to either choose not to support unpackaged
applications (which might be OK), or store some sort of hardcoded exception list in a config
database (with some sort of tamper protections).

Something similar has been done at Google on their Debian-based devices. One issue they
ran into is that, unlike RPMs, there is not currently a place in DEB packages to store their
signature metadata. So this would require some more changes to the ecosystem before we
could make this widely available.

Sandboxed app runtimes, like Flatpak and Snaps, do typically provide application IDs, and
there is even some work to put these application IDs in a standard place where D-Bus can
access it. This doesn't completely solve the problem, since it doesn't address unsandboxed
applications, which | think will be around for quite a while.

In the meantime, I'll probably wind up releasing an initial version of the platform API
without origin checking but make sure to tell developers that they should use the APl in
such a way that when origin checking is later enabled that it doesn't break their code.

Hardening Platform Authenticator Credential Access

Our goal is to provide a platform authenticator that creates device-bound passkeys using a
TPM. But, as we mentioned above, we should also make sure that the platform API has
exclusive access to the credentials. By default, any process (including any user on any OS
running on the machine) on the device can ask the TPM to sign data with any credential
blob it has access to. That means that an attacker must gain access to the device
(physically, or a malicious app or remote code execution vulnerability) to sign that, but
then any process with access to the TPM key file could sign arbitrary WebAuthn challenges.
No bueno.

Protecting from the user

We should at least make it so that arbitrary processes running as the logged-in user cannot
access the key blobs. We can accomplish this by running the platform authenticator as a
separate service user and having it own the files. This means that exploiting the keys
requires privilege escalation.

Protecting from root

For extra protection, we should also add a MAC rule (SELinux/AppArmor) that only the
platform authenticator service can access the TPM key blobs, so that even root processes
cannot access the service. Of course, that only holds if the LSM policy is correct, which root
can change. This can still be effective if the malicious root process runs in a sandbox (e.g.
with seccomp) that disallows LSM policy changes, so it's still worth doing.

https://www.youtube.com/watch?v=Qqp_pb8qKFY
https://gitlab.freedesktop.org/dbus/dbus/-/issues/171

Protecting from the kernel

But what if we wanted to harden this even further: what if we wanted to protect the
credentials, even if the OS itself is compromised? That would require some sort of access
control at a level above the kernel, which is hardware in a typical scenario.

Apple's Approach

Apple devices have all the software and hardware made by the same vendor, so the OS
can depend on specific hardware setups, like the Secure Enclave that can handle keys
securely. Application signing requirements also allow the OS to restrict keys to a particular
application or set of applications.

Windows' approach

The Linux ecosystem is more like Windows', with heterogeneous hardware and little to no
signing of software. So how does Windows protect credentials from the kernel?

Windows has a feature, Virtualization-Based Security (VBS), that protects certain data. It's

based on a Hyper-V feature called virtual secure mode (VSM), where the OS is split into
two or more VMs called virtual trust levels (VTL). The VTLs are arranged in priority, so that
VTL1 is more privileged than VTLO, for example. At boot, the bootloader starts the VTLs
and boots the guest OS, the main OS the user interacts with, into VTLO, and boots a

stripped-down secure OS into VTL1.

So far, this sounds like normal virtualization. But VSM also defines "hypercalls" (like
syscalls from userspace to the kernel above it, but instead from the kernel to the
hypervisor above it), so that the guest OS can communicate with the secure OS. The
secure OS can communicate with the guest OS by sharing memory, so there is
bidirectional communication. Because the hypercalls are very limited, and the amount of
code running the secure OS is minimal, we get a much smaller trusted computing base
(TCB) whose memory and CPU state cannot be corrupted by malicious processes in the
guest OS, whether userspace or kernel processes (at least not without a hypervisor
escape).

This basically gives Windows a TEE on any processor that supports the required
virtualization features (basically all consumer processors released in the last decade).

Linux's approach?

How does Hyper-V VSM help us on Linux? Well, Hyper-V is actually both an implementation
and specification, and there are two projects that are attempting to implement the Hyper-V

https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/vsm
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/tlfs

VSM spec for Linux: Heki, from Microsoft, and another one from a team at Amazon. These

implementations are still in progress, but look very promising.

What would we still need to do when these are finished? I'm hitting the limits of my
research on these topics, so it's a little fuzzy. But | think we would need to:

« Pick an OS for the secure OS, like OP-TEE2. There seems to be an implementation for
Intel (x86 in general?); perhaps we'd just need to adapt the HAL to be able to use the
VTL exits and interrupts and shared memory coming from VSM.

e For handling cryptographic secrets in a way that is unaccessible to the guest OS, we'd
need to create a way to provision the secrets only to VTL1. Depending on how we
boot VTL1, this could perhaps be done using systemd-boot. It stores the "boot phase"
in a TPM PCR. We could generate and bind the secure OS's root secret to the enter-

initrd phase. During boot, we'd start the secure OS with the root secret, change the
PCR to leave-initrd, and then continue booting the guest OS. The root secret key blob
would only be available in the secure OS's memory.

e Implement the platform authenticator as a Trusted Application (TA) inside the TEE
using the GlobalPlatform TEE Internal Core API (which is implemented by OP-TEE).
WebAuthn credentials created by the platform authenticator TA would be wrapped by
the root secret provisioned to the secure OS.

At this point, we'd have WebAuthn credentials that are inaccessible to the kernel!

With the secure OS primitive, we may also be able to get value out of using Microsoft's
SDCP protocol to securely connect to biometric sensors, which could then allow us to

release WebAuthn credentials using biometrics instead of just a PIN. | am not aware of any
Linux drivers for these that implement SDCP, but at least some reverse engineering has

been done on some SDCP-supported devices, so the community may be able to continue
that work.

Like | said, | need to do a bit more research to know if these are viable. But these ideas are
not new: for example, Matthew Garrett has written before about virtualized security for
Linux WebAuthn and biometrics and hiding_ TPM secrets from the kernel.

Other hopes and dreams

This is already too long, so I'm just going to throw a laundry list of other things I'd like to
see in this space:

e FIDO2 credential management, so you can set up PINs and policies for new security
keys, delete credentials from them, etc.

e Have the platform APl mediate access to passwords along with passkeys. Passwords
are going to be around for a long time, and while password manager extensions use,

https://github.com/heki-linux
https://lore.kernel.org/kvm/D47UPV0JIIMY.35CRZ8ZNZCGA1@amazon.com/
https://optee.readthedocs.io/en/latest/index.html
https://www.intel.com/content/www/us/en/developer/topic-technology/open/op-tee/overview.html
https://systemd.io/TPM2_PCR_MEASUREMENTS/#pcr-measurements-made-by-systemd-pcrextend-userspace
https://systemd.io/TPM2_PCR_MEASUREMENTS/#pcr-measurements-made-by-systemd-pcrextend-userspace
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://github.com/Microsoft/SecureDeviceConnectionProtocol/wiki/Secure-Device-Connection-Protocol
https://github.com/Microsoft/SecureDeviceConnectionProtocol/wiki/Secure-Device-Connection-Protocol
https://blackwinghq.com/blog/posts/a-touch-of-pwn-part-i/
https://mjg59.dreamwidth.org/62746.html
https://mjg59.dreamwidth.org/62746.html
https://lore.kernel.org/lkml/20210220013255.1083202-1-matthewgarrett@google.com/T/#u

they are hard to implement securely. The API wouldn't store passwords directly
though, it'd probably just providing hooks for password manager applications.

e Similarly, having a TOTP API to store and autofill TOTPs automatically would be useful.

e Could we have some sort of autofill service and Ul integration (like a GTK widget)
injects third party

 We need a way to bind apps/packages to web origins, the equivalent of Related
Origins, Digital Asset Links, and Apple Site Associations. Could we use something like
the App binding mechanism: Web Manifest spec?

e A privacy-preserving proxy service for looking up origins related to an rpld or app ID.

¢ On-device queryable signatures in DEB packages.

e An open-source implementation of caBLE/hybrid server for debugging, potentially
provided as a service for Linux-based phones, like the PinePhone or Librem.

Thanks for reading! If you've made it this far, you may be interested in helping out. © Feel
free to reach out!

Resources

e Enabling Windows Credential Guard in KVM (KVM Forum, YouTube),

e Emulating Hyper-V's Virtual Secure Mode (VSM)_with QEMU (YouTube),
e Credential Guard Overview (learn.microsoft.com),

e Virtualization Based Security Overview (learn.microsoft.com)

e Virtual Secure Mode (VSM)_(learn.microsoft.com)

e On-device WebAuthn and What Makes It Hard to Do Well

e Why does GNOME Fingerprint Not Unlock the Keyring?

e DIGLIM overview, predecessor to Integrity Digest Cache

1 This has implications for account recovery, since if the credentials are tied to the device,
if you lose the device, you're locked out. Because of this, the major platforms have all
implemented passkey syncing within their ecosystem: Apple devices sync via iCloud
Keychain, Android devices sync via Google Password Manager, and as of recently, Windows
syncs to Microsoft Account. There is standardization work to make passkeys sync across
these ecosystems as well.

2 |If you're curious about device support, you can check out the awesome compatibility
matrix on passkeys.dev made by Tim Cappali and others.

3 One downside of putting the Ul in the platform, although the Ul between browsers/apps
on a single device is consistent, it is inconsistent between devices on different platforms.
When browsers controlled the whole Ul, it made it consistent across different platforms. |
think this is a fine tradeoff based on my (perhaps incorrect) intuition that since Apple is
basically the only vendor that provides both desktop/laptop and mobile devices,
consumers either will tend to stay within a single platform for their devices (all Apple), or
would have already have had a mix of devices (Windows laptop + Android or iPhone, or

https://wicg.github.io/manifest-incubations/#related_applications-member
https://www.iinuwa.xyz/#contact-me
https://www.youtube.com/watch?v=QY7lg6aMaWc
https://www.youtube.com/watch?v=vixbDuGof3Q
https://learn.microsoft.com/en-us/windows/security/identity-protection/credential-guard/
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/vsm
https://mjg59.dreamwidth.org/62746.html
https://mjg59.dreamwidth.org/68537.html
https://www.youtube.com/watch?v=iA7T4MAqKUc&pp=ygUMZGlnbGltIGxpbnV4
https://passkeys.dev/device-support/
https://passkeys.dev/device-support/

Mac + Android) and therefore would be used to differing platforms anyway. (This
concession does not apply to syncing passkeys, just the Ul; | still think we should work to
accomplish usable cross-ecosystem syncing in native platforms.)

4| believe that Integrity Digest Cache and IMA take care of TOCTOU problem of checking
the race condition of checking the signature of the process as it was when the process
started vs. what it is on disk at the time of the WebAuthn request.

> |'ve also glanced at sel4, which is interesting due to its formal verification. Also

interesting, both seld4 and sepOS, Apple's secure OS for the Secure Enclave, happen to be
based on the L4 microkernel.

[More posts]

https://sel4.systems/
https://www.iinuwa.xyz/blog

