
Home GitHub Papers Categories Tags Imiron lawvere-lang

 17 minute read Published: 2025-06-27

There's a trend at the moment of solving online games with programming , let's do one from the
UK called *Passport Application*, which is developed by "His Majesty's Passport Office" or HMPO.
It's a cultural phenomenon in the UK: despite being quite expensive (about £100 just to start) for the
standard online version (a masterpiece of minimalist design, entirely text-based), most British play
the game, and do so every 10 years or so.

It's an adventure puzzle document collection game. The premise is to collect enough artefacts,
scattered throughout various bureaucratic institutions, until you can prove the statement "Applicant
is British" according to an extremely complex set of rules, written in arcane language, in various
texts called "acts of parliament". The prize for winning is a little booklet with a date inside that
indicates when you can play again.

Hardcore players opt for an entirely paper-based version that relies entirely on postal mail. The
puzzle-sheets for that look like this:

Solving `Passport Application` with Haskell
===

https://jameshaydon.github.io/
https://jameshaydon.github.io/
https://github.com/jameshaydon
https://github.com/jameshaydon
https://jameshaydon.github.io//papers
https://jameshaydon.github.io//papers
https://jameshaydon.github.io//categories
https://jameshaydon.github.io//categories
https://jameshaydon.github.io//tags
https://jameshaydon.github.io//tags
https://imiron.io/
https://imiron.io/
https://github.com/jameshaydon/lawvere
https://github.com/jameshaydon/lawvere
https://news.ycombinator.com/item?id=44363696
https://news.ycombinator.com/item?id=44363696
https://news.ycombinator.com/item?id=44273489
https://news.ycombinator.com/item?id=44273489
https://news.ycombinator.com/item?id=44259476
https://news.ycombinator.com/item?id=44259476
https://www.gov.uk/government/organisations/hm-passport-office
https://www.gov.uk/government/organisations/hm-passport-office

There are various instructions for what collectibles need to be gathered, presented in game
instruction manuals such as:

The game starts easy enough, you just need to enter basic facts about the applicant, and take a photo
of them. But things get tougher from there, with various side-quests, all designed to be fun:

All this keeps the game interesting and fun, taking weeks and sometimes months to complete. Non-
British people aren't *really* supposed to play, but seeing as proving Britishness is the whole object
of the game, it's actually open to anyone! I thoroughly encourage you to give it a go.

So this time I was playing on behalf of my daughter, because I'd already completed the game recently,
and besides she's too young to play on her own. I chose the "first child passport born abroad"
difficulty level, so expected it to be quite challenging from the outset. After a round of waiting,
the first round of document requests came through. Quite a lot of documents, most of which seemed
quite unrelated to the main objective, but that's the game. I started collecting them but some were
quite difficult to obtain so I decided to use the chat feature. You see your game is handled by a
person called an "examiner", they are the ones who send you on document gathering quests, according to

HMPO sometimes decides to send you on an "identity confirmation" side quest. This involves finding
someone whose job/status is one of a finite list, things like "accountant" or "civil servant", but
they also have some fun ones like "chiropodist", "funeral director" and "airline pilot". Once
you've managed to track down such a person, preferably one who knows you, you must socially
engineer them into filling in some webforms.

-

The main mechanic of the game involves sending in "original" documents. Documents that are not in
english need to be paired with an "officially certified translation", which triggered some cool
side-quests in my case like "how to get a certified translation of a French marriage certificate,
which is in my possession in Japan, and have both sent to HMPO by mail".

-

Some documents relate to family members, and so you need to start getting the whole family involved
in a co-op mode.

-

And of course the bureaucratic institutions you must request some documents from have their own
arcane gameplay.

-

their interpretation of the rules. To add an extra layer of difficulty, you can't directly communicate
with this person, you can only talk to "advice agents" using a chat or telephone service. These agents
offer advice on side-quests, but nothing they say is official. They can pass along questions to the
examiner, but that triggers a few days of waiting time, sometimes up to 10 days in my case, a tactic
used to build suspense.

Quite quickly the chat service told me that 75% of the initial documents requested were unnecessary;
it was all just a misdirection! So another round of waiting, and then more document requests. You get
document requests via emails like this:

The document requests are paired with some cryptic explanations that are somewhat helpful but still
vague enough to keep the game interesting. Why don't I have parental responsibility for
`__APPLICANT_NAME__`? One of the listed conditions is "named on the child's birth certificate", which
I am, and was already sent to them, along with the Japanese→English translation. Maybe they also need
proof of the first condition, despite the second, and despite this document not having been requested
earlier in the process. In any case I can't satisfy the third. Or maybe some automated system has
messed up; the broken HTML templating indicates that maybe `APPLICANT_NAME == NULL` in some database,
who knows.

Another round of document requests, one for a document that doesn't exist, another round of helpline.
More explorations of conversation trees with NPCs, an alternative path to the goal is found, more
documents. This culminated in a rare relic request:

Applicant's Paternal great-grandfather's birth certificate and marriage certificate

One of these documents is almost 100 years old! Of course `applicant's Paternal great grandfather` is
ambiguous, since most people have 2 of them, but this is standard misdirection at this point and all
part of the fun. After decrypting this to `applicant's father's father's father's birth certificate` I
started to wonder why such a distant document would be requested. Engaging the advice agents didn't
help much, one launched into explanations as to why

was needed even though this document was already in their possession, and I was asking about

One admitted they had no idea why the document was requested.

So what's going on here? It's important to understand the sort of logic used by HMPO in the *Passport

Application* game. It's called Bureaucratic Logic, it derives from Constructive Logic , in that one
cannot just make valid arguments, that would be too easy, one has to construct proofs of a particular
nature to back them up. Constructive logic has witnesses, Bureaucratic logic has original documents.

For example, like constructive logic, HMPO doesn't allow you to use exclusive middle: (or
not) is not in general valid. The gameplay is greatly influenced by answers to questions such as
"was applicant's father's father born in the UK or not born in the UK?" But you can't just say "yes
one of those is true" and then provide documents for both resulting scenarios. That would be using
exclusive middle. You *must* commit to one alternative *and* provide a document for that. This is were
it's important to remember that it's not about actually demonstrating citizenship, for which exclusive
middle would be a perfectly valid argument, *Passport Application* is about having fun gathering
documents. Don't question the rules too much or you'll stop having fun.

The second piece of the puzzle is in the guidance that accompanies the document requests:

Note that the Britishness of a person can be dependent on the Britishness of their parents. The final
piece of the puzzle is that HMPO doesn't trust its own passports records to prove Britishness. This is
the mechanic which, in some cases, kicks off *recursive* document requests up the family tree, until a
base case is reached. What are the base cases? A base case is an ancestor whose Britishness *does not*
depend on a parent, e.g. someone who was naturalised, or born in the UK before 1983 (which makes one
unconditionally british regardless of parents). That's right, further into the future we get from
1983, the taller these call-stacks can get. Fun!

This is how the request chain pertaining to this document played out in my case (in parallel to other
requests), quotes are from HMPO emails:

British passports are issued to those who have a claim to British nationality under the British
Nationality Act 1981. This is decided mainly by a person’s place and date of birth and their
parents’ places and dates of birth. A person born outside of the UK after 31 December 1982 is
normally a British citizen only if, at the time of their birth one parent is a British citizen
otherwise than by descent, such as through birth in the UK or registration or naturalisation as a
British citizen.

Date initial documents received by HMPO: 7 June: applicant's birth certificate, applicant's
father's birth certificate

-

Request (12 June)-

https://en.wikipedia.org/wiki/Constructive_logic
https://en.wikipedia.org/wiki/Constructive_logic

Note that the recursion is playing out via email.

At this point I did what any sane person would do, I reached for a logic programming language and
decided to encode the rules in the hope of figuring out what was going on. Is it possible to write
some code which could have produced the full list of required documents upfront, with no confusion,
and perfect explanations? Of course this would ruin all the fun of the game, which is why HMPO doesn't
do it, but let's forge ahead.

(Full code is on GitHub .)

At first I started encoding the rules in Prolog, but switched to Haskell's `LogicT` monad after a
while. The basic goal here is to produce the full list of documents required for the application. But
this isn't quite right: because there are several ways one can claim Britishness, there are several
sets of documents that can work, and you only need one of them. So really one is looking for a
function that returns `Set (Set Document)`, where

Send documents from their father’s own father

As APPLICANT’s father was also born after 1st January 1983, we will also need evidence of their
claim to British citizenship. For this reason, we need their own father’s birth certificate.

Request (26 June)

Send documents from their great paternal grandparent

As APPLICANT’s grandparent was born abroad, we will also need evidence of their claim to
British citizenship. For this reason, we need to see documents from APPLICANT's paternal great
grandfather.

We need their:

birth certificate-
marriage certificate-

-

Haskell code

data Parent = Mother | Father

 deriving (Show, Eq, Ord)

data Person = Applicant | Parent Parent Person

 deriving (Show, Eq, Ord)

data Document

 = BirthCertificate Person

 | MarriageCertificate Person Person

 | NaturalizationCertificate Person

 | Passport Person

https://github.com/jameshaydon/uk-passport
https://github.com/jameshaydon/uk-passport

But this is also unsatisfying, because you want to know *why* a certain document set is enough. So
this is really a proof-search problem, and we proceed in two stages:

This two-staged approach is what made me switch to Haskell, though I'm sure someone more experienced
with Prolog would have made it work.

So we define a simple proof type:

This type could be made much more complex, detailing each rule that was used, but this simpler type
was at least enough for my purposes. One feature I wanted was that one would not need to provide all
the information upfront, instead questions would be asked interactively, and only if needed.
Furthermore, previous facts should be retained and used for all branches, backtracking, etc. So we
need `IO` and `State`, and we want the state to be global across all branches:

Here `Predicate`s are the sorts of things that are true of a person and affect how the rules of the
game play out:

 -- more documents

 deriving (Show, Eq, Ord)

we use `LogicT` to enumerate all the `Proof`s of Britishness for the applicant, given some
information about them, and

-

for each `Proof` we compute the `Set (Set Document)` that is needed to satisfy that proof.-

data Proof

 = -- Deriving britishness via a parent, and their proof of britishness

 ViaParent Person Proof

 | -- Britishness via two claims.

 And Proof Proof

 | -- Foundational evidence.

 Evidence Predicate

 deriving (Show)

data Knowledge = SureYes | SureNo | Unsure

 deriving (Eq)

type Claims = Map Predicate Knowledge

type M a = StateT Claims (LogicT IO) a

data Predicate

 = IsBritish Person

 | Settled Person

 | BornBefore Int Person

 | BornInUK Person

Here is then the root function for Britishness:

The `check` function here interacts with the user, to avoid launching into an investigation if the
user knows that person is not british:

A person is `brit` either `byBirth` or `naturalised`. Naturalisation is the simplest, as a single
certificate is then the sole document needed. Britishness by birth forks mainly on whether or not the
person was born in the UK, and we go to sub-routines:

 | BornAfter Int Person

 | Naturalized Person

 | Years3LivingInUK Person

 | IsBritOtbd Person

 | Married Person Person

 deriving (Show, Eq, Ord)

-- | Is a person british?

brit :: Person -> M Proof

brit p =

 do

 check (IsBritish p)

 byBirth <|> naturalised

 where

 byBirth =

 ifThenElse

 (evidence (BornInUK p))

 (britBornInUk p)

 (britBornAbroad p)

 naturalised = evidence (Naturalised p)

-- | Ask about a predicate, failing if the answer is a sure no.

check :: Predicate -> M ()

check q = do

 answer <- question q

 guard (answer /= SureNo)

-- | UK-born citizenship (pre-1983 or via parent)

britBornInUk :: Person -> M Proof

britBornInUk p = evidence (BornBefore 1983 p) `orElse` britBornInUkViaParent p

-- | UK-born citizenship via parent (used for post-1983 births)

britBornInUkViaParent :: Person -> M Proof

People born in the UK before `1983` are a base case, they are unconditionally British. Otherwise they
acquire it via at least one their parents, who must be either British themselves or "settled" at time
of birth. The `orElse` function here is similar to `<|>`, but doesn't include proofs from the second
branch at all if the first is successful (`<|>` always accumulates proofs from both branches). E.g. if
`brit parent` is true then `settled parent` doesn't apply: there is no notion of "settled in the UK"
for British people.

When not born in the UK things are more complex:

When not born in the UK, you get citizenship from your parents in the usual way only if there is

evidence of 3 years of consecutive living in the UK1, or if born from a person that is *British
otherwise than by descent* (BOTBD). This is a person with "super Britishness", they can confer
citizenship to their children unconditionally (well, apart from having to play hard games of `Passport
Application`). The basic idea is that someone is BOTBD if they didn't become British purely via a
parent. E.g. they were naturalised, or born in the UK, etc. There are *many* edge-cases in the rules,
and I've only coded those that are most relevant to my case. One of them is `bornCrownService`, this
says that one is still BOTBD if born abroad *because a parent was working in "Crown Service"*, e.g. in

an embassy. This happens to be the case of during the birth of
, but is this relevant? We'll have to wait till we've coded enough to run

this program.

A lot of these functions rely on a higher order function `viaParent`, which mediates how citizenship
is passed down to children:

britBornInUkViaParent p = viaParent p (\parent -> brit parent `orElse` settled parent)

-- | British citizenship for those born abroad

britBornAbroad :: Person -> M Proof

britBornAbroad p =

 viaParent p $ \parent ->

 britOtbd parent `orElse` (brit parent `and` evidence (Years3LivingInUK parent))

-- | British otherwise than by descent (BOTD)

britOtbd :: Person -> M Proof

britOtbd p = do

 check (IsBritOtbd p)

 evidence (Naturalised p) `orElse` britOtbdUkBorn `orElse` bornCrownService p

 where

 britOtbdUkBorn = evidence (BornInUK p) `and` britBornInUk p

bornCrownService :: Person -> M Proof

bornCrownService p = viaParent p $ \parent -> do

 check (CrownService parent)

 brit parent `and` evidence (CrownService parent)

This takes a person, and a `cond`ition for a parent, and produces a proof of Britishness for `p` as
long as `cond` can be proved for one of `p`'s parents. There is an extra complication here relating to
laws surrounding "illegitimate" children born before 2006, so an extra check for marriage is required
in some cases. There are ways around this not codified here ("registration"). There are other sexist
clauses too, about only fathers passing on Britishness in some cases, that I also haven't codified
here. It's interesting that even though some of these laws no longer apply, they apply *historically*
when trying to work out if an ancestor was british. That's right, to play `Passport Application` you
need to consult laws from many different times!

To run the code we `observeAllT (evalStateT m Map.empty)`, the `Map.empty` indicating we start with no
knowledge. Once a proof has been found we use `docs :: Proof -> Logic (Set Document)` to produce the
needed documents for *that path* to citizenship. This will mostly list out documents for foundational
evidence, and e.g. make sure that when `ViaParent` is used, a birth certificate linking parent and
child is produced.

Let's run it!

viaParent :: Person -> (Person -> M Proof) -> M Proof

viaParent p cond = viaMother <|> viaFather

 where

 via parent = ViaParent (Parent parent p) <$> cond (Parent parent p)

 viaMother = via Mother

 viaFather =

 ifThenElse

 (evidence (BornAfter 2006 p))

 (via Father)

 (married (Parent Father p) (Parent Mother p) `and` via Father)

ghci> run (brit Applicant)

? : Applicant is british

y

? : Applicant was born in UK

n

? : Applicant's Mother is british otherwise than by descent

n

? : Applicant was born after 2006

y

? : Applicant's Father is british otherwise than by descent

y

? : Applicant's Father was born in UK

y

? : Applicant's Father was born before 1983

n

? : Applicant's Father's Mother is british

n

This goes on for quite some questions, 37 in my case. You can answer question like `Applicant's Mother
is british otherwise than by descent` with "dk" (don't know), and in this case it will explore the
tree for you, the main use is *not* exploring this branch if you do know it is futile.

Once all the citizenship proofs are produced, they are printed and possible document sets are
produced:

? : Applicant's Father's Mother was settled at time of birth

y

? : Applicant's Father was born after 2006

n

? : Applicant's Father's Father was married to Applicant's Father's Mother at time of birth

y

? : Applicant's Father's Father is british

...

Applicant has 3 proof(s) of britishness:

Proof 1:

• Applicant was born after 2006

• Via Applicant's Father's britishness:

 • Applicant's Father was born in UK

 • Via Applicant's Father's Mother's britishness:

 Applicant's Father's Mother was settled at time of birth

Possible doc sets:

• - Birth certificate for Applicant,

 - Birth certificate for Applicant's Father,

 - Settled status document for Applicant's Father's Mother

Proof 2:

• Applicant was born after 2006

• Via Applicant's Father's britishness:

 • Applicant's Father was born in UK

 • • Applicant's Father's Father was married to Applicant's Father's Mother at time of birth

 • Via Applicant's Father's Father's britishness:

 Via Applicant's Father's Father's Mother's britishness:

 • Applicant's Father's Father's Mother was born in UK

 • Applicant's Father's Father's Mother was born before 1983

And there it is, in `Proof 3`:

The "Crown Service" status of caused quite some confusion in my case,
because was indeed born abroad, causing some amount of recursion. But

hilariously the crown service of turns out to be totally irrelevant, indeed
the BOTBD status of is already derived from being born in the UK and simple

Britishness of . But this simple Britishness still needs to be established,
so the recursion to still occurs.

Interestingly, the proof that HMPO has selected for my case is the longest and most complex of the 3,
I assume that when there are several choices they send the player down the most complex one, for extra
fun. Indeed `Proof 1` is quite simple, it requires only proving a settled status of one ancestor *and
that's it*. Citizenship via *non-british* settled ancestors can be much simpler, because these cases

are non-recursive2. `Proof 2` is also slightly more optimized, because it relies on `Birth certificate

Possible doc sets:

• - Birth certificate for Applicant,

 - Birth certificate for Applicant's Father's Father's Mother,

 - Birth certificate for Applicant's Father,

 - Birth certificate for Applicant's Father's Father,

 - Marriage certificate for Applicant's Father's Father and Applicant's Father's Mother

Proof 3:

• Applicant was born after 2006

• Via Applicant's Father's britishness:

 • Applicant's Father was born in UK

 • • Applicant's Father's Father was married to Applicant's Father's Mother at time of birth

 • Via Applicant's Father's Father's britishness:

 • Applicant's Father's Father's Father was married to Applicant's Father's Father's Mother

 • Via Applicant's Father's Father's Father's britishness:

 • Applicant's Father's Father's Father was born in UK

 • Applicant's Father's Father's Father was born before 1983

Possible doc sets:

• - Birth certificate for Applicant,

 - Birth certificate for Applicant's Father,

 - Birth certificate for Applicant's Father's Father,

 - Birth certificate for Applicant's Father's Father's Father,

 - Marriage certificate for Applicant's Father's Father and Applicant's Father's Mother,

 - Marriage certificate for Applicant's Father's Father's Father and Applicant's Father's Father's M

Birth certificate for Applicant's Father's Father's Father

for Applicant's Father's Father's Mother`, which therefore bypasses the need for a marriage

certificate, needed in `Proof 3` to prove "legitimacy" of `Applicant's Father's Father`3.

Proofs relying on Britishness bottom out when reaching a person born before 1983 in the UK, the
further we get from this date, the longer the proofs become. This applies, at least in theory, *even
when everyone involved is born in the UK*. In practice this doesn't happen because HMPO doesn't
actually apply the laws as written in the act, they have their own guidance documents, and act using
the principle of balance of probabilities , and there seems to be guidance indicating that for
standard applications from the UK for people born in the UK, one can use "Main Index" (their internal
passport database). So you have to play on "hard mode", e.g. birth abroad, which triggers some global
"extra scrutiny" flag, which prevents the use of "Main Index" in *all recursive calls*.

Extra notes

There are several places where I have used `orElse`, but `<|>` could be used instead. As mentioned
above, `<|>` will explore both branches, but `orElse` only explores the second branch if the first
completely fails. In the case of

this is completely valid, but in some of the other situations it's not so simple. This one for
example:

really could be an `<|>`, and in my case it makes for much more proofs of citizenship. But it
involves an extra level of bureaucratic process ("Registration"), so it seems HMPO will try to
exhaust `britOtbd parent` before trying the second branch.

brit parent `orElse` settled parent

britOtbd parent `orElse` and (brit parent) (evidence (Years3LivingInUK parent))

-

Some things are not tracked carefully enough, for example there are something which have to be true
at certain times, e.g. some people need to be married or settled specifically at the time some
other person was born. But this wouldn't be hard to do.

-

The above is mostly just an encoding of the part of the law that was applicable to my case, or that
I found interesting, the full thing would need much more code, and lots and lots of edge-cases.

-

Should such things be automated more? It seems clear that this would have been useful in my case,
if I was given access to such software I could have produced the correct set of documents much
faster, and understood why things got complex. I think institutions like HMPO shy away from such
software because UK nationality law is extremely nuanced, so if a computer program gives a false
positive in some case it might cause a lot of trouble, with people complaining they aren't being
given a passport even though "computer says yes". And full automation, replacing human expertise,
can be even worse, with people being denied citizenship because "computer says no".

-

https://www.gov.uk/government/publications/balance-of-probabilities/balance-of-probabilities-accessible
https://www.gov.uk/government/publications/balance-of-probabilities/balance-of-probabilities-accessible

I've still not finished my current game of PassportApplication, I'm trying to get through proofs 2 and
3 simultaneously, and failing that will try proof 1.

1

This situation is actually more complex than presented here, you have to prove living in the UK for 3
consecutive years, with absences of not more thatn 270 consecutive days, and then this launches into
another process called "Registration of Minors".

3

Or maybe it's invalid because of some historical sexist rules I didn't encode?

2

But it might still be complicated because proving a person is "settled" at some point in time is
difficult.

--

Published by James Haydon in programming and tagged logic , passport and haskell

--

https://jameshaydon.github.io/categories/programming/
https://jameshaydon.github.io/categories/programming/
https://jameshaydon.github.io/tags/logic/
https://jameshaydon.github.io/tags/logic/
https://jameshaydon.github.io/tags/passport/
https://jameshaydon.github.io/tags/passport/
https://jameshaydon.github.io/tags/haskell/
https://jameshaydon.github.io/tags/haskell/

