
matklad About Links Blogroll

RSS Server Side Reader
Jun 26, 2025

I like the idea of RSS, but none of the RSS readers stuck with me,
until I implemented one of my own, using a somewhat unusual
technique. There’s at least one other person using this approach
now, so let’s write this down.

About RSS
Let me start with a quick rundown of RSS, as the topic can be
somewhat confusing. I am by no means an expert; my perspective is
amateur.

The purpose of RSS is to allow blog authors to inform the readers
when a new post comes out. It is, first and foremost, a notification
mechanism. The way it works is that a blog publishes a machine
readable list of recent blog entries. An RSS reader fetches this list,
persists the list in the local state, and periodically polls the original
site for changes. If a new article is published, the reader notices it on
the next poll and notifies the user.

RSS is an alternative to Twitter- and HackerNews-likes for
discovering interesting articles. Rather than relying on word of
mouth popularity or algorithmic feeds, you curate your own list of
favorite authors, and use a feed reader in lieu of compulsively
checking personal websites for updates directly.

There are several specific standards that implement the general feed
idea. The original one is RSS. It is a bad, ambiguous, and overly
complicated standard. Don’t use it. Instead, use Atom, a much
clearer and simpler standard. Whenever “RSS” is discussed (as in the
present article), Atom is usually implied. See Atom vs. RSS for a
more specific discussion on the differences.

While simpler, Atom is not simple. A big source of accidental
complexity is that Atom feed is an XML document that needs to
embed HTML. HTML being almost like XML, it is easy to mess up
escaping. The actually good, simple standard is JSON Feed.

https://matklad.github.io/
https://matklad.github.io/about.html
https://matklad.github.io/links.html
https://matklad.github.io/blogroll.html
https://www.ietf.org/rfc/rfc4287.txt
https://nullprogram.com/blog/2013/09/23/
https://www.jsonfeed.org/

However, it appears to be completely unmaintained as of 2025. This
is very unfortunate. I hope someone takes over the maintenance
from the original creators.

About Feed Readers
As I’ve mentioned, while I like the ideas behind RSS, none of the
existing RSS readers worked for me. They try to do more than I
need. A classical RSS reader fetches full content of the articles, saves
it for offline reading and renders the content using an embedded
web-browser. I don’t need this. I prefer reading the articles on the
author’s website, using my normal browser (and, occasionally, its
reader mode). The only thing I need is notifications.

What Didn’t Work: Client Side Reader
My first attempt at my own RSS reader was to create a web page that
stored the state in the browser’s local storage. This idea was foiled by
CORS. In general, if a client-side JavaScript does a fetch it can only
fetch resources from the domain the page itself is hosted on. But
feeds are hosted on other domains.

What Did Work: SSR
I have a blog. You are reading it. I now build my personalized feed as a
part of this blog’s build process. It is hosted at

https://matklad.github.io/blogroll.html

This list is stateless: for each feed I follow, I display the latest three
posts, newer posts on top. I don’t maintain read/unread state. If I
don’t remember whether I read the article or not, I might as well re-
read! I can access this list from any device.

While it is primarily for me, the list is publicly available, and might be
interesting for some readers of my blog. Hopefully, it also helps to
page-rank the blogs I follow!

The source of truth is the blogroll.txt. It is a simple list of links, with
one link per line. Originally, I tried using OPML, but it is far too
complicated for what I need here, and is actively inconvenient to
modify by hand.

Here’s the entire code to fetch the blogroll, using this library:

https://matklad.github.io/blogroll.html
https://github.com/matklad/matklad.github.io/blob/ea7bc5161d7b2bc12a7a004408caaefb509b9f92/content/blogroll.txt
https://github.com/MikaelPorttila/rss

// deno-lint-ignore-file no-explicit-any
import { parseFeed } from "@rss";

export interface FeedEntry {
 title: string;
 url: string;
 date: Date;
}

export async function blogroll(): Promise<FeedEntry[]> {
 const urls =
 (await Deno.readTextFile("content/blogroll.txt"))
 .split("\n").filter((line) => line.trim().length > 0);
 const all_entries =
 (await Promise.all(urls.map(blogroll_feed))).flat();
 all_entries.sort((a, b) =>
 b.date.getTime() - a.date.getTime());
 return all_entries;
}

async function blogroll_feed(
 url: string
): Promise<FeedEntry[]> {
 let feed;
 try {
 const response = await fetch(url);
 const xml = await response.text();
 feed = await parseFeed(xml);
 } catch (error) {
 console.error({ url, error });
 return [];
 }

 return feed.entries.map((entry: any) => {
 return {
 title: entry.title!.value!,
 url: (entry.links.find((it: any) => {
 it.type == "text/html" || it.href!.endsWith(".html");
 }) ?? entry.links[0])!.href!,
 date: (entry.published ?? entry.updated)!,
 };
 }).slice(0, 3);
}

And this is how the data is converted to HTML during build
process:

export function BlogRoll(
 { posts }: { posts: FeedEntry[] }
) {
 function domain(url: string): string {
 return new URL(url).host;
 }

 const list_items = posts.map((post) => (

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

1
2
3
4
5
6
7
8

 <h2>

 <Time date={post.date} />, {domain(post.url)}

 {post.title}
 </h2>

));

 return (
 <Base>
 <ul class="post-list">
 {list_items}

 </Base>
);
}

GitHub actions re-builds blogroll every midnight:
name: CI
on:
 push:
 branches:
 - master

 schedule:
 - cron: "0 0 * * *" # Daily at midnight.

jobs:
 CI:
 runs-on: ubuntu-latest
 permissions:
 pages: write
 id-token: write

 steps:
 - uses: actions/checkout@v4
 - uses: denoland/setup-deno@v2
 with:
 deno-version: v2.x

 - run: deno task build --blogroll

 - uses: actions/upload-pages-artifact@v3
 with:
 path: ./out/www
 - uses: actions/deploy-pages@v4

Links
Tangentially related, another pattern is to maintain a list of all-times
favorite links:

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

https://matklad.github.io/links.html

Fix typo Subscribe Get in touch matklad

https://matklad.github.io/links.html
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2025-06-26-rssssr.dj
https://matklad.github.io/feed.xml
mailto:aleksey.kladov+blog@gmail.com
https://github.com/matklad

