
Interfacing MCP with Combinatorial,

Convex, and SMT Solvers

Lately I've been working on using MCP beyond just using it for

symbolic algebra manipulations, I've been thinking about how to

interface large language models with a suite of dedicated solvers for

scientific computing exposed as tools to the model. And particularly

for automating workflows in physical engineering disciplines.

Github Source Code

git clone https://github.com/sdiehl/usolver.git

If you're not familiar with MCP, you can read more about it in my

previous post or the thousand other breathless thinkpieces on the

internet about how it's the greatest thing since sliced bread or

something. But in reality it's just a janky way to expose a set of

function calls (called tools) to a language model via a JSON RPC

interface. Language are models are great at language interpretation

and limited "planning", and numerical solvers are great at numerical

computation. So let each system do what they do best and synthesize

the two to build a hybrid system. MCP is just the glue to bind these

scientific Python libraries with the model, essentially the 'cgi-bin' of

AI.

The simplest motivation for combining language models with

numerical solvers via MCP is that it's vastly more efficient for certain

problems. Consider the dumb example that you certainly can feed a

Sudoku puzzle into one of the frontier reasoning models (o3,

deepseek r1, etc) and after spinning for quite some time it can

(maybe) solve it by talking to "itself" about trial and error guesses for

quite some time. The chain of thought will be this vast sequence of

guesses and backtracking. But, you can also feed it into a dedicated

numerical or logical solver and it will solve it nearly instantly. The

same thing goes for many well-studied classical computer science

problems: boolean SAT, job shop, vehicle routing, knapsack problem,

shift scheduling, travelling salesman etc. There are a lot of pre-

existing efficient solvers that research groups have been building and

tuning for decades.

Stephen Diehl

Index

Blog

Python

Mathematics

Machine

Learning

Humor

Logic

Programming

Public Policy

Quantitative

Finance

Functional

Programming

Compilers

Formal Methods

Haskell

Contact Me

PGP Key

Github

Bluesky

LinkedIn

RSS

https://www.stephendiehl.com/posts/computer_algebra_mcp/
https://github.com/sdiehl/usolver
https://www.stephendiehl.com/posts/computer_algebra_mcp/
https://www.stephendiehl.com/
https://www.stephendiehl.com/
https://www.stephendiehl.com/posts
https://www.stephendiehl.com/tags/python/
https://www.stephendiehl.com/tags/mathematics/
https://www.stephendiehl.com/tags/ai/
https://www.stephendiehl.com/tags/humor/
https://www.stephendiehl.com/tags/logic-programming/
https://www.stephendiehl.com/tags/policy/
https://www.stephendiehl.com/tags/finance/
https://www.stephendiehl.com/tags/fp/
https://www.stephendiehl.com/tags/compilers/
https://www.stephendiehl.com/tags/formal/
https://www.stephendiehl.com/tags/haskell/
https://www.stephendiehl.com/hire
https://www.stephendiehl.com/pgp
https://github.com/sdiehl
https://bsky.app/profile/www.stephendiehl.com
https://www.linkedin.com/in/stephen-diehl-43778134a
https://www.stephendiehl.com/feed.xml

As a less theoretical example, consider a common chemical

engineering challenge: specifying the design parameters for a

processing plant, focusing on line sizing and the associated fluid

dynamics. In a typical day to day workflow engineers must determine

optimal pipe diameters and requisite pump specifications to achieve

target output flow rates for various chemical products. This task is

essentially a system of coupled, often non-linear, governing equations

encompassing fluid properties (density, viscosity), mass and energy

balances across the network, and pressure drop calculations.

Any design must adhere to operational limits, such as maximum

allowable pressures within each pipe segment to ensure structural

integrity and safety, minimum flow rates to maintain reaction kinetics

or prevent settling, and the physical topology of how pipes, valves,

and reactors are interconnected. There are dedicated solvers for this,

but they are very expensive, and generally suck. Or people write lots

of Excel macros and Goal Seek, which I guess works, but there are

much better tools.

The bottleneck is simply that the APIs for many of these open source

SMT and convex solvers can be, let's say, character-building. If an

LLM, piped through MCP, could translate your plain English "what

if" into the arcane syntax these solvers speak, suddenly these super-

powerful, often byzantine, systems become way less intimidating and

democratize access beyond the need for relying on specialized

programmers.

Imagine instead, just telling an LLM, via MCP: "Given these target

flow rates for product X, using fluid Y with these properties, and

ensuring pressure never exceeds Z psi in any line, what are the

optimal pipe diameters and pump specs for lines A, B, and C, which

are connected in this configuration? Imagine a process engineer who

typically spends a significant portion of their week iteratively

translating evolving production targets and safety parameters into

precise mathematical constraints for solver input, then painstakingly

validating the complex outputs for, say, a new heat exchanger

network.

With an LLM-solver integration this same engineer could articulate

high-level objectives and constraints in natural language—"design a

network to cool stream X from 200°C to 50°C using available cold

utility Y, minimizing operational cost while ensuring no tube-side

Stephen Diehl

Index

Blog

Python

Mathematics

Machine

Learning

Humor

Logic

Programming

Public Policy

Quantitative

Finance

Functional

Programming

Compilers

Formal Methods

Haskell

Contact Me

PGP Key

Github

Bluesky

LinkedIn

RSS

https://www.stephendiehl.com/
https://www.stephendiehl.com/
https://www.stephendiehl.com/posts
https://www.stephendiehl.com/tags/python/
https://www.stephendiehl.com/tags/mathematics/
https://www.stephendiehl.com/tags/ai/
https://www.stephendiehl.com/tags/humor/
https://www.stephendiehl.com/tags/logic-programming/
https://www.stephendiehl.com/tags/policy/
https://www.stephendiehl.com/tags/finance/
https://www.stephendiehl.com/tags/fp/
https://www.stephendiehl.com/tags/compilers/
https://www.stephendiehl.com/tags/formal/
https://www.stephendiehl.com/tags/haskell/
https://www.stephendiehl.com/hire
https://www.stephendiehl.com/pgp
https://github.com/sdiehl
https://bsky.app/profile/www.stephendiehl.com
https://www.linkedin.com/in/stephen-diehl-43778134a
https://www.stephendiehl.com/feed.xml

pressure exceeds Z"—and have the system automatically formulate

the problem, execute the appropriate solver, and present digestible

design specifications. This could compress what was previously a

multi-day, error-prone exercise as a human constraint generator and

checker into minutes, liberating valuable engineering expertise to

focus on genuinely creative challenges of their role.

And not just for this one specific field. The dream is to be able to

describe all of the constraints for many complex systems (be it a

chemical plant, hospital shift planning, or portfolio optimization) in

natural language so that the LLM can plan the constraints, delegate to

the solver(s), and let the user have a back and forth with about the

problem and solution in way that is natural to them. If done well (and

we're not there yet) that would be very very powerful.

Then there's more... let's call it forward-looking play: generating

synthetic reasoning data. This one's a bit more niche. If we can get an

LLM to bulk formulate tricky problems for these solvers, and then

learn from the solver's perfectly structured, provably correct answers,

we could bootstrap a ton of high-quality training data and then feed

that back in as instruction tuning data.

Prototype

But let's start with the easy ones. That's the Stanford cvxopt for

convex optimization, Microsoft's z3 SMT solver, and Google or-tools

for combinatorial optimization. Just these three packages alone are

extremely powerful. Like a seashell, if you look at their source code

you can hear the screams of hundreds of PhD students sacrificed on

the altar of science to build them.

I've built a prototype of this called USolver which implements the

MCP interface to the solvers.

Let's look at some examples. For chemical engineering problems, you

can describe a water transport pipeline design task in plain English

which gets turned into a Z3 constraint satisfaction problem.

Stephen Diehl

Index

Blog

Python

Mathematics

Machine

Learning

Humor

Logic

Programming

Public Policy

Quantitative

Finance

Functional

Programming

Compilers

Formal Methods

Haskell

Contact Me

PGP Key

Github

Bluesky

LinkedIn

RSS

https://github.com/sdiehl/usolver
https://www.stephendiehl.com/
https://www.stephendiehl.com/
https://www.stephendiehl.com/posts
https://www.stephendiehl.com/tags/python/
https://www.stephendiehl.com/tags/mathematics/
https://www.stephendiehl.com/tags/ai/
https://www.stephendiehl.com/tags/humor/
https://www.stephendiehl.com/tags/logic-programming/
https://www.stephendiehl.com/tags/policy/
https://www.stephendiehl.com/tags/finance/
https://www.stephendiehl.com/tags/fp/
https://www.stephendiehl.com/tags/compilers/
https://www.stephendiehl.com/tags/formal/
https://www.stephendiehl.com/tags/haskell/
https://www.stephendiehl.com/hire
https://www.stephendiehl.com/pgp
https://github.com/sdiehl
https://bsky.app/profile/www.stephendiehl.com
https://www.linkedin.com/in/stephen-diehl-43778134a
https://www.stephendiehl.com/feed.xml

Design a water transport pipeline with the followin

* Volumetric flow rate: 0.05 m³/s

* Pipe length: 100 m

* Water density: 1000 kg/m³

* Maximum allowable pressure drop: 50 kPa

* Flow continuity: Q = π(D/2)² × v

* Pressure drop: ΔP = f(L/D)(ρv²/2), where f ≈ 0.02

* Practical limits: 0.05 ≤ D ≤ 0.5 m, 0.5 ≤ v ≤ 8 m

* Pressure constraint: ΔP ≤ 50,000 Pa

* Find: optimal pipe diameter and flow velocity

The LLM translates this into a Z3 constraint satisfaction problem,

handling all the messy details of flow equations and physical

constraints. You get back optimal pipe dimensions and flow

parameters that satisfy all your requirements.

Or take a classic operations research problem like employee

scheduling. Instead of wrestling with complex combinatorial

optimization syntax, you can just say:

Stephen Diehl

Index

Blog

Python

Mathematics

Machine

Learning

Humor

Logic

Programming

Public Policy

Quantitative

Finance

Functional

Programming

Compilers

Formal Methods

Haskell

Contact Me

PGP Key

Github

Bluesky

LinkedIn

RSS

https://www.stephendiehl.com/
https://www.stephendiehl.com/
https://www.stephendiehl.com/posts
https://www.stephendiehl.com/tags/python/
https://www.stephendiehl.com/tags/mathematics/
https://www.stephendiehl.com/tags/ai/
https://www.stephendiehl.com/tags/humor/
https://www.stephendiehl.com/tags/logic-programming/
https://www.stephendiehl.com/tags/policy/
https://www.stephendiehl.com/tags/finance/
https://www.stephendiehl.com/tags/fp/
https://www.stephendiehl.com/tags/compilers/
https://www.stephendiehl.com/tags/formal/
https://www.stephendiehl.com/tags/haskell/
https://www.stephendiehl.com/hire
https://www.stephendiehl.com/pgp
https://github.com/sdiehl
https://bsky.app/profile/www.stephendiehl.com
https://www.linkedin.com/in/stephen-diehl-43778134a
https://www.stephendiehl.com/feed.xml

Use usolver to solve a nurse scheduling problem wit

* Schedule 4 nurses (Alice, Bob, Charlie, Diana) ac

* Shifts: Morning (7AM-3PM), Evening (3PM-11PM), Ni

* Each shift must be assigned to exactly one nurse

* Each nurse works at most one shift per day

* Distribute shifts evenly (2-3 shifts per nurse ov

* Charlie can't work on Tuesday.

But where it gets really interesting is when you chain these solvers

together. Here's an example where we optimize a restaurant's

operations by combining two different solvers in sequence. First, we

use Google's OR-Tools combinatorial optimization to determine the

optimal mix and layout of different sized tables within a restaurant's

available dining area, maximizing total seating capacity while

respecting minimum table requirements and space constraints.

Then, we take that optimal seating capacity and feed it into the cvxopt

solver to determine the most cost-effective staffing schedule across a

12-hour day. The staffing optimizer accounts for variable customer

Stephen Diehl

Index

Blog

Python

Mathematics

Machine

Learning

Humor

Logic

Programming

Public Policy

Quantitative

Finance

Functional

Programming

Compilers

Formal Methods

Haskell

Contact Me

PGP Key

Github

Bluesky

LinkedIn

RSS

https://www.stephendiehl.com/
https://www.stephendiehl.com/
https://www.stephendiehl.com/posts
https://www.stephendiehl.com/tags/python/
https://www.stephendiehl.com/tags/mathematics/
https://www.stephendiehl.com/tags/ai/
https://www.stephendiehl.com/tags/humor/
https://www.stephendiehl.com/tags/logic-programming/
https://www.stephendiehl.com/tags/policy/
https://www.stephendiehl.com/tags/finance/
https://www.stephendiehl.com/tags/fp/
https://www.stephendiehl.com/tags/compilers/
https://www.stephendiehl.com/tags/formal/
https://www.stephendiehl.com/tags/haskell/
https://www.stephendiehl.com/hire
https://www.stephendiehl.com/pgp
https://github.com/sdiehl
https://bsky.app/profile/www.stephendiehl.com
https://www.linkedin.com/in/stephen-diehl-43778134a
https://www.stephendiehl.com/feed.xml

demand throughout the day, ensures adequate coverage for the

calculated seating capacity, and minimizes labor costs while

maintaining service quality and reasonable shift changes. This

demonstrates how we can specify a a business problem in plain

English, compile it down into a system of constraints, turn those

constraints into a system of equations, and then solve it using a chain

of numerical solvers with the LLM orchestrating the flow of data and

verbalizing the answers!

Use usolver to optimize a restaurant's layout and s

* Part 1: Optimize table layout

 - Mix of 2-seater, 4-seater, and 6-seater tables

 - Maximum floor space: 150 m²

 - Space requirements: 4m² (2-seater), 6m² (4-seat

 - Maximum 20 tables total

 - Minimum mix: 2× 2-seaters, 3× 4-seaters, 1× 6-s

 - Objective: Maximize total seating capacity

* Part 2: Optimize staff scheduling using Part 1's

 - 12-hour operating day

 - Each staff member can handle 20 seats

 - Minimum 2 staff per hour

 - Maximum staff change between hours: 2 people

 - Variable demand: 40%-100% of capacity

 - Objective: Minimize labor cost ($25/hour per st

And then almost like magic, the LLM coordinates the two solvers and

returns the optimal solution. It figures out the optimal table layout and

then uses that to schedule the staff. Here's what Claude Desktop

generates given the project specification.

Stephen Diehl

Index

Blog

Python

Mathematics

Machine

Learning

Humor

Logic

Programming

Public Policy

Quantitative

Finance

Functional

Programming

Compilers

Formal Methods

Haskell

Contact Me

PGP Key

Github

Bluesky

LinkedIn

RSS

https://www.stephendiehl.com/
https://www.stephendiehl.com/
https://www.stephendiehl.com/posts
https://www.stephendiehl.com/tags/python/
https://www.stephendiehl.com/tags/mathematics/
https://www.stephendiehl.com/tags/ai/
https://www.stephendiehl.com/tags/humor/
https://www.stephendiehl.com/tags/logic-programming/
https://www.stephendiehl.com/tags/policy/
https://www.stephendiehl.com/tags/finance/
https://www.stephendiehl.com/tags/fp/
https://www.stephendiehl.com/tags/compilers/
https://www.stephendiehl.com/tags/formal/
https://www.stephendiehl.com/tags/haskell/
https://www.stephendiehl.com/hire
https://www.stephendiehl.com/pgp
https://github.com/sdiehl
https://bsky.app/profile/www.stephendiehl.com
https://www.linkedin.com/in/stephen-diehl-43778134a
https://www.stephendiehl.com/feed.xml

And then figures out the optimal staffing schedule for that optimal

table layout.

And it's pretty magical that such a complex problem can be solved in

a few seconds with such a simple interface. I'm incredibly bullish

about this kind of approach and expanding the set of available tools

for the LLM to include many more advanced solvers.

Although don't drink too much of the breathless AI hype Kool-aid just

yet. There are some quite real limitations in this approach. Namely,

that there is no strict guarantees that LLMs are able to do semantic

parsing of the problem with complete accuracy. We can partially

mitigate this exposing a computer algebra system and having it check

the solutions at each step. There are still mechanisms for

transpositions and misinterpretations to slip in.

If this kind of approach becomes mainstream, there could also be

benchmarks like SWE-bench for tool-calling of scientific computing

packages that could be used to improve model performance upstream.

Stephen Diehl

Index

Blog

Python

Mathematics

Machine

Learning

Humor

Logic

Programming

Public Policy

Quantitative

Finance

Functional

Programming

Compilers

Formal Methods

Haskell

Contact Me

PGP Key

Github

Bluesky

LinkedIn

RSS

https://www.stephendiehl.com/
https://www.stephendiehl.com/
https://www.stephendiehl.com/posts
https://www.stephendiehl.com/tags/python/
https://www.stephendiehl.com/tags/mathematics/
https://www.stephendiehl.com/tags/ai/
https://www.stephendiehl.com/tags/humor/
https://www.stephendiehl.com/tags/logic-programming/
https://www.stephendiehl.com/tags/policy/
https://www.stephendiehl.com/tags/finance/
https://www.stephendiehl.com/tags/fp/
https://www.stephendiehl.com/tags/compilers/
https://www.stephendiehl.com/tags/formal/
https://www.stephendiehl.com/tags/haskell/
https://www.stephendiehl.com/hire
https://www.stephendiehl.com/pgp
https://github.com/sdiehl
https://bsky.app/profile/www.stephendiehl.com
https://www.linkedin.com/in/stephen-diehl-43778134a
https://www.stephendiehl.com/feed.xml

But at the moment it's still very much a best-effort approach and you

would certainly need to have a human-in-the-loop to check the

solutions, especially in any kind of safety-critical application. But it

might be able to make that human a lot more productive.

The Vision for Universal Solver Interface

Consider the potential of a unified interface that could seamlessly

integrate with state-of-the-art solvers across multiple domains with

frontier language models via MCP (or whatever the next generation of

MCP is):

Z3 - SMT solver for constraint satisfaction over booleans,

integers, reals, and strings

CvxPy - Framework for convex optimization problems

Or-Tools - Suite for combinatorial optimization and constraint

programming

MiniZinc - Discrete optimization solver

GAP - Computational group theory solvers

Clingo - Answer set programming system

Flint - Number theory computations

TLA+ / Apalache - Temporal logic solver

Egglog - Term rewriting and equality saturation engine

SymPy - Comprehensive computer algebra system

Souffle - Datalog-based declarative logic programming

framework

Mathematica - Risch-based symbolic integration solver and

simplification routines

Sage - Umbrella project for many scientific computing packages

Th i l i f h ifi d ld b
© 2009 - 2025 Stephen Diehl. All rights reserved.

Stephen Diehl

Index

Blog

Python

Mathematics

Machine

Learning

Humor

Logic

Programming

Public Policy

Quantitative

Finance

Functional

Programming

Compilers

Formal Methods

Haskell

Contact Me

PGP Key

Github

Bluesky

LinkedIn

RSS

https://www.stephendiehl.com/
https://www.stephendiehl.com/
https://www.stephendiehl.com/posts
https://www.stephendiehl.com/tags/python/
https://www.stephendiehl.com/tags/mathematics/
https://www.stephendiehl.com/tags/ai/
https://www.stephendiehl.com/tags/humor/
https://www.stephendiehl.com/tags/logic-programming/
https://www.stephendiehl.com/tags/policy/
https://www.stephendiehl.com/tags/finance/
https://www.stephendiehl.com/tags/fp/
https://www.stephendiehl.com/tags/compilers/
https://www.stephendiehl.com/tags/formal/
https://www.stephendiehl.com/tags/haskell/
https://www.stephendiehl.com/hire
https://www.stephendiehl.com/pgp
https://github.com/sdiehl
https://bsky.app/profile/www.stephendiehl.com
https://www.linkedin.com/in/stephen-diehl-43778134a
https://www.stephendiehl.com/feed.xml

