
Routing

Introducing Roto: A Compiled
Scripting Language for Rust

Team NLnet Labs

21 May 2025 • 3 min read

Photo by Joseph Barrientos / Unsplash

By Terts Diepraam

Home DNS Routing

Research Newsletter

Sign in Subscribe

https://blog.nlnetlabs.nl/tag/routing/
https://blog.nlnetlabs.nl/author/nlnetlabs/
https://unsplash.com/@jbcreate_?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://blog.nlnetlabs.nl/author/nlnetlabs/
https://blog.nlnetlabs.nl/
https://blog.nlnetlabs.nl/
https://blog.nlnetlabs.nl/tag/dns/
https://blog.nlnetlabs.nl/tag/routing/
https://blog.nlnetlabs.nl/tag/research/
https://blog.nlnetlabs.nl/tag/newsletter/
https://nlnetlabs.nl/
https://github.com/NLnetLabs
https://fosstodon.org/@nlnetlabs

We are working on an embedded scripting language for Rust. This language, called Roto,

aims to be a simple yet fast and reliable scripting language for Rust applications.

The need for Roto comes from Rotonda, our BGP engine written in Rust. Mature BGP

applications usually feature some way to filter incoming route announcements. The

complexity of these filters often exceed the capabilities of configuration languages. With

Rotonda, we want to allow our users to write more complex filters with ease. So we

decided to give them the power of a full scripting language.

We have some hard requirements for this language. First, we need these filters to be fast.

Second, Rotonda is critical infrastructure and so runtime crashes are unacceptable. This

rules out dynamically typed languages, of which there are plenty in the Rust community.

 We want a statically typed language which can give us more type safety and speed.

Finally, we want a language that is easy to pick up; it should feel like a statically typed

version of scripting languages you're used to.

Roto fills this niche for us. In short, it's a statically typed, JIT compiled, hot-reloadable,

embedded scripting language. To get good performance, Roto scripts are compiled to

machine code at runtime with the cranelift compiler backend.

Below is a small sample of a Roto script. In this script, we define a filtermap , which

results in either accept or reject . In this case, we accept when the IP address

is within the given range.

filtermap within_range(range: AddrRange, ip: IpAddr) {

 if range.contains(ip) {

 accept ip

 } else {

 reject

 }

}

Instead of a filtermap , we could instead write a more conventional function ,

which can simply return a value. The filtermap is a construct that Roto supports

[1]

https://github.com/NLnetLabs/roto?ref=blog.nlnetlabs.nl
https://nlnetlabs.nl/projects/routing/rotonda/?ref=blog.nlnetlabs.nl
https://cranelift.dev/?ref=blog.nlnetlabs.nl

to make writing filters easier.

The Roto code there might look quite simple, but there's a twist: AddrRange is not a

built-in type. Instead, it is added to Roto by the host application (e.g. Rotonda), making it

available for use in the script. Similarly, the contains method on AddrRange is

provided by the host application as well. The full code necessary to run the script above is

listed below. This example is also available on our GitHub repository.

use std::net::IpAddr;

use std::path::Path;

use roto::{roto_method, FileTree, Runtime, Val, Verdict};

#[derive(Clone)]

struct AddrRange {

 min: IpAddr,

 max: IpAddr,

}

fn run_script(path: &Path) {

 // Create a runtime

 let mut runtime = Runtime::new();

 // Register the AddrRange type into the runtime with a docstring

 runtime

 .register_clone_type::<AddrRange>("A range of IP addresses")

 .unwrap();

 // Register the contains method on AddrRange

 #[roto_method(runtime, AddrRange)]

 fn contains(range: &AddrRange, addr: &IpAddr) -> bool {

 range.min <= addr && addr <= range.max

 }

 // Compile the program

 let program =

 FileTree::read(path).compile(runtime).unwrap();

 // Extract the Roto filtermap, which is accessed as a function

 let function = program

 .get_function::<(), (Val<AddrRange>, IpAddr), Verdict<IpAddr, ()>

 "within_range"

[2]

https://github.com/NLnetLabs/roto/blob/a4edc7fcea79a2498798f69da4cdb9beb6ecd4d1/examples/addr_range.rs?ref=blog.nlnetlabs.nl

)

 .unwrap();

 // Run the filtermap

 let range = AddrRange {

 min: "10.10.10.10".parse().unwrap(),

 max: "10.10.10.12".parse().unwrap(),

 };

 let in_range = "10.10.10.11".parse().unwrap();

 println!("{:?}", function.call(&mut (), range, in_range)));

 let out_of_range = "10.10.11.10".parse().unwrap();

 println!("{:?}", function.call(&mut (), range, out_of_range));

}

Note that nothing in the script is run automatically when the script is loaded, as happens

in many other scripting language. The host application decides which functions and

filtermaps it extracts from the script and when to run them.

Roto is very tightly integrated with Rust. Many Rust types , methods and functions can

be registered directly for use in Roto. These types can be passed to Roto at negligible

cost; there is no serialization between Roto and Rust. For Rotonda, this means that Roto

can operate on raw BGP messages without costly conversion procedures.

The registration mechanism also ensures that Roto is not limited to Rotonda and could

easily be used outside that context. It is designed as a general scripting or plug-in

language.

We have many planned features on the roadmap for Roto and will continue to improve

this language. This also means that the language should not be considered stable, though

we'd love to hear feedback if you experiment with it. If you're interested, check out the

documentation, repository and examples.

[3]

https://rotonda.docs.nlnetlabs.nl/en/stable/roto/00_introduction.html?ref=blog.nlnetlabs.nl
https://github.com/NlnetLabs/roto?ref=blog.nlnetlabs.nl
https://github.com/NLnetLabs/roto/tree/main/examples?ref=blog.nlnetlabs.nl

1. E.g. Rhai, Rune, Mlua, Deno, PyO3, Dyon & Koto. ↩

2. Note that the registering of types is not hindered by Rust's orphan rule, because it doesn't require any

specific traits apart from Clone . This makes it possible to expose types from external libraries to

Roto. ↩

3. Specifically, types implementing Clone or Copy . Types that don't implement these traits can be

wrapped in an Rc or Arc to be passed to Roto. ↩

Sign up for more like this.

Enter your email Subscribe

21 May 2025 5 min read

Overhauling Domain

By Arya K. Previously, we discussed the massive

development our domain library underwent over…

24 Apr 2025 1 min read

Prometheus Metrics in NSD

4.12.0

By Jannik Peters We finally implemented a

Prometheus metrics endpoint, providing the…

https://rhai.rs/?ref=blog.nlnetlabs.nl
https://rune-rs.github.io/?ref=blog.nlnetlabs.nl
https://github.com/mlua-rs/mlua?ref=blog.nlnetlabs.nl
https://deno.com/?ref=blog.nlnetlabs.nl
https://pyo3.rs/?ref=blog.nlnetlabs.nl
https://github.com/PistonDevelopers/dyon?ref=blog.nlnetlabs.nl
https://koto.dev/?ref=blog.nlnetlabs.nl
https://doc.rust-lang.org/reference/items/implementations.html?ref=blog.nlnetlabs.nl#orphan-rules
https://blog.nlnetlabs.nl/overhauling-domain/
https://blog.nlnetlabs.nl/overhauling-domain/
https://blog.nlnetlabs.nl/prometheus-metrics-in-nsd-4-12-0/
https://blog.nlnetlabs.nl/prometheus-metrics-in-nsd-4-12-0/

The NLnet Labs Blog © 2025 Powered by Ghost

https://blog.nlnetlabs.nl/
https://ghost.org/

