
How to defend your website with ZIP

bombs

the good old methods still work today

Jul 5th, 2017 © Christian Haschek

[update] I'm on some list now that I have written an article about some kind of

"bomb", ain't I?

If you have ever hosted a website or even administrated a server you'll be very

well aware of bad people trying bad things with your stuff.

When I first hosted my own little linux box with SSH access at age 13 I read

through the logs daily and report the IPs (mostly from China and Russia) who

tried to connect to my sweet little box (which was actually an old ThinkPad

T21 with a broken display running under my bed) to their ISPs.

Actually if you have a linux server with SSH exposed you can see how many

connection attempts are made every day:

grep 'authentication failures' /var/log/auth.log

https://blog.haschek.at/

Hundreds of failed login attempts even though this server has disabled password authentication and runs
on a non-standard port

Wordpress has doomed us all

Ok to be honest, web vulnerability scanners have existed before Wordpress but

since WP is so widely deployed most web vuln scanners include scans for some

misconfigured wp-admin folders or unpatched plugins.

So if a small, new hacking group wants to gain some hot cred they'll download

one of these scanner things and start testing against many websites in hopes of

gaining access to a site and defacing it.

Sample of a log file during a scan using the tool Nikto

This is why all server or website admins have to deal with gigabytes of logs full

with scanning attempts. So I was wondering..

https://wpscan.org/
https://github.com/sullo/nikto
http://rgaucher.info/beta/grabber/
https://en.wikipedia.org/wiki/Website_defacement

Is there a way to strike back?

After going through some potential implementations with IDS or Fail2ban I

remembered the old ZIP bombs from the old days.

WTH is a ZIP bomb?

So it turns out ZIP compression is really good with repetitive data so if you

have a really huge text file which consists of repetitive data like all zeroes, it

will compress it really good. Like REALLY good.

As 42.zip shows us it can compress a 4.5 peta byte (4.500.000 giga bytes) file

down to 42 kilo bytes. When you try to actually look at the content (extract or

decompress it) then you'll most likely run out of disk space or RAM.

How can I ZIP bomb a vuln scanner?

Sadly, web browsers don't understand ZIP, but they do understand GZIP.

So firstly we'll have to create the 10 giga byte GZIP file filled with zeroes. We

could make multiple compressions but let's keep it simple for now.

dd if=/dev/zero bs=1M count=10240 | gzip > 10G.gzip

Creating the bomb and checking its size

As you can see it's 10 MB large. We could do better but good enough for now.

Now that we have created this thing, let's set up a PHP script that will deliver it

to a client.

https://en.wikipedia.org/wiki/Intrusion_detection_system
https://en.wikipedia.org/wiki/Fail2ban
https://en.wikipedia.org/wiki/Zip_bomb
http://www.unforgettable.dk/

<?php
//prepare the client to recieve GZIP data. This will not be suspicious
//since most web servers use GZIP by default
header("Content-Encoding: gzip");
header("Content-Length: ".filesize('10G.gzip'));
//Turn off output buffering
if (ob_get_level()) ob_end_clean();
//send the gzipped file to the client
readfile('10G.gzip');

That's it!

So we could use this as a simple defense like this:

<?php
$agent = filter_input(INPUT_SERVER, 'HTTP_USER_AGENT');

//check for nikto, sql map or "bad" subfolders which only exist on wordpress
if (strpos($agent, 'nikto') !== false || strpos($agent, 'sqlmap') !== false ||
{
 sendBomb();
 exit();
}

function sendBomb(){
 //prepare the client to recieve GZIP data. This will not be suspicious
 //since most web servers use GZIP by default
 header("Content-Encoding: gzip");
 header("Content-Length: ".filesize('10G.gzip'));
 //Turn off output buffering
 if (ob_get_level()) ob_end_clean();
 //send the gzipped file to the client
 readfile('10G.gzip');
}

function startsWith($a, $b) {
 return strpos($a, $b) === 0;
}

This script obviously is not - as we say in Austria - the yellow of the egg, but it

can defend from script kiddies I mentioned earlier who have no idea that all

these tools have parameters to change the user agent.

Sooo. What happens when the script is called?

Client Result

IE 11 Memory rises, IE crashes

Chrome Memory rises, error shown

Edge Memory rises, then dripps and loads forever

Nikto Seems to scan fine but no output is reported

SQLmap High memory usage until crash

Safari
Hight memory usage, then crashes and reloads, then memory

rises again, etc..

Chrome

(Android)
Memory rises, error shown

(if you have tested it with other devices/browsers/scripts, please let me know

and I'll add it here)

Reaction of the script called in Chrome

If you're a risk taker: Try it yourself

Tags: security php compression

viewsviews 171,450171,450

Comment using SSH! Info

ssh f2fda@ssh.blog.haschek.at

Comments

Get new posts by email

(~ one email every couple of months & no spam)

https://twitter.com/geek_at
https://blog-backend.haschek.at/tools/bomb.php
https://blog.haschek.at/tags/security
https://blog.haschek.at/tags/php
https://blog.haschek.at/tags/compression
https://blog.haschek.at/2023/ssh-based-comment-system.html

Your email address

Sign up

 1ChrisHMgr4DvEVXzAv1vamkviZNLPS7yx
 0x1337C2F18e54d72d696005d030B8eF168a4C0d95

https://www.paypal.me/ChristianHaschek/3
https://www.paypal.me/ChristianHaschek/3
https://www.blockchain.com/en/btc/address/1ChrisHMgr4DvEVXzAv1vamkviZNLPS7yx
https://etherscan.io/address/0x1337C2F18e54d72d696005d030B8eF168a4C0d95

