
What Does "use client" Do?
April 25, 2025

React Server Components (in?)famously has no API surface. It’s an entire

programming paradigm largely stemming from two directives:

'use client'

'use server'

I’d like to make a bold claim that their invention belongs in the same category

as structured programming (if / while), first-class functions, and

async / await . In other words, I expect them to survive past React and to

become common sense.

The server needs to send code to the client (by sending a <script>). The

client needs to talk back to the server (by doing a fetch). The 'use client'

and 'use server' directives abstract over those, offering a first-class, typed,

and statically analyzable way to pass control to a piece of your codebase on

another computer:

'use client' is a typed <script> .

'use server' is a typed fetch() .

Together, these directives let you express the client/server boundary within

the module system. They let you model a client/server application as a single

program spanning the two machines without losing sight of the reality of the

by

Watch on YouTubePay what you like

https://tirania.org/blog/archive/2013/Aug-15.html
https://tirania.org/blog/archive/2013/Aug-15.html
https://overreacted.io/
https://danabra.mov/
https://danabra.mov/
https://www.youtube.com/watch?v=31e5c67znF4
https://ko-fi.com/gaearon

network and serialization gap. That, in turn, allows seamless composition

across the network.

Even if you never plan to use React Server Components, I think you should

learn about these directives and how they work anyway. They’re not even

about React.

They are about the module system.

'use server'

First, let’s look at 'use server' .

Suppose you’re writing a backend server that has some API routes:

async function likePost(postId) {
 const userId = getCurrentUser();
 await db.likes.create({ postId, userId });
 const count = await db.likes.count({ where: { postId } });
 return { likes: count };
}

async function unlikePost(postId) {
 const userId = getCurrentUser();
 await db.likes.destroy({ where: { postId, userId } });
 const count = await db.likes.count({ where: { postId } });
 return { likes: count };
}

app.post('/api/like', async (req, res) => {
 const { postId } = req.body;
 const json = await likePost(postId);
 res.json(json);
});

app.post('/api/unlike', async (req, res) => {
 const { postId } = req.body;
 const json = await unlikePost(postId);
 res.json(json);
});

https://overreacted.io/impossible-components/
https://overreacted.io/impossible-components/

Then you have some frontend code that calls these API routes:

(For simplicity, this example doesn’t try to handle race conditions and

errors.)

This code is all dandy and fine, but it is “stringly-typed”. What we’re trying to

do is to call a function on another computer. However, since the backend and the

frontend are two separate programs, we have no way to express that other

than a fetch .

Now imagine we thought about the frontend and the backend as a single

program split between two machines. How would we express the fact that a piece

of code wants to call another piece of code? What is the most direct way to

express that?

If we set aside our preconceived notions about how the backend and the

frontend “should” be built for a moment, we can remember that all we’re really

document.getElementById('likeButton').onclick = async function() {
 const postId = this.dataset.postId;
 if (this.classList.contains('liked')) {
 const response = await fetch('/api/unlike', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ postId })
 });
 const { likes } = await response.json();
 this.classList.remove('liked');
 this.textContent = likes + ' Likes';
 } else {
 const response = await fetch('/api/like', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ postId, userId })
 });
 const { likes } = await response.json();
 this.classList.add('liked');
 this.textContent = likes + ' Likes';
 }
});

https://www.hanselman.com/blog/stringly-typed-vs-strongly-typed

trying to say is that we want to call likePost and unlikePost from our

frontend code:

The problem is, of course, likePost and unlikePost cannot actually

execute on the frontend. We can’t literally import their implementations into

the frontend. Importing the backend directly from the frontend is by

definition meaningless.

However, suppose that there was a way to annotate the likePost and

unlikePost functions as being exported from the server at the module level:

import { likePost, unlikePost } from './backend'; // This doesn't work :(

document.getElementById('likeButton').onclick = async function() {
 const postId = this.dataset.postId;
 if (this.classList.contains('liked')) {
 const { likes } = await unlikePost(postId);
 this.classList.remove('liked');
 this.textContent = likes + ' Likes';
 } else {
 const { likes } = await likePost(postId);
 this.classList.add('liked');
 this.textContent = likes + ' Likes';
 }
};

'use server'; // Mark all exports as "callable" from the frontend

export async function likePost(postId) {
 const userId = getCurrentUser();
 await db.likes.create({ postId, userId });
 const count = await db.likes.count({ where: { postId } });
 return { likes: count };
}

export async function unlikePost(postId) {
 const userId = getCurrentUser();
 await db.likes.destroy({ where: { postId, userId } });
 const count = await db.likes.count({ where: { postId } });
 return { likes: count };
}

We could then automate setting up the HTTP endpoints behind the scenes.

And now that we have an opt-in syntax for exporting functions over the

network, we could assign meaning to importing them from the frontend code

—import ing them could simply give us async functions that perform those

HTTP calls:

That’s precisely what the 'use server' directive is.

This is not a new idea—RPC has been around for decades. This is just a

specific flavor of RPC for client-server applications where the server code can

designate some functions as “server exports” ('use server'). Importing

likePost from the server code works the same as a normal import , but

importing likePost from the client code gives you an async function that

performs the HTTP call.

Have another look at this pair of files:

import { likePost, unlikePost } from './backend';

document.getElementById('likeButton').onclick = async function() {
 const postId = this.dataset.postId;
 if (this.classList.contains('liked')) {
 const { likes } = await unlikePost(postId); // HTTP call
 this.classList.remove('liked');
 this.textContent = likes + ' Likes';
 } else {
 const { likes } = await likePost(postId); // HTTP call
 this.classList.add('liked');
 this.textContent = likes + ' Likes';
 }
};

'use server'; // Mark all exports as "callable" from the frontend

export async function likePost(postId) {
 const userId = getCurrentUser();
 await db.likes.create({ postId, userId });
 const count = await db.likes.count({ where: { postId } });
 return { likes: count };
}

https://en.wikipedia.org/wiki/Remote_procedure_call

You may have objections—yes, it doesn’t allow multiple consumers of the API

(unless they’re within the same codebase); yes, it requires some thought as to

versioning and deployment; yes, it is more implicit than writing a fetch .

But if you adopt the view that the backend and a frontend are a single program

split across two computers, you can’t really “unsee” it. There is now a direct and

visceral connection between the two modules. You can add types to narrow

down their contract (and enforce that their types are serializable). You can use

“Find All References” to see which functions from the server are used on the

client. Unused endpoints can be automatically flagged and/or eliminated with

dead code analysis.

Most importantly, you can now create self-contained abstractions that fully

encapsulate both sides—a “frontend” attached to its corresponding “backend”

piece. You don’t need to worry about an explosion of API routes—the

server/client split can be as modular as your abstractions. There is no global

naming scheme; you organize the code using export and import , wherever

you need them.

export async function unlikePost(postId) {
 const userId = getCurrentUser();
 await db.likes.destroy({ where: { postId, userId } });
 const count = await db.likes.count({ where: { postId } });
 return { likes: count };
}

import { likePost, unlikePost } from './backend';

document.getElementById('likeButton').onclick = async function() {
 const postId = this.dataset.postId;
 if (this.classList.contains('liked')) {
 const { likes } = await unlikePost(postId); // HTTP call
 this.classList.remove('liked');
 this.textContent = likes + ' Likes';
 } else {
 const { likes } = await likePost(postId); // HTTP call
 this.classList.add('liked');
 this.textContent = likes + ' Likes';
 }
};

The 'use server' directive makes the connection between the server and

the client syntactic. It is no longer a matter of convention—it’s in your module

system.

It opens a door to the server.

'use client'

Now suppose that you want to pass some information from the backend to the

frontend code. For example, you might render some HTML with a <script> :

The browser will load that <script> which will attach the interactive logic:

app.get('/posts/:postId', async (req, res) => {
 const { postId } = req.params;
 const userId = getCurrentUser();
 const likeCount = await db.likes.count({ where: { postId } });
 const isLiked = await db.likes.count({ where: { postId, userId } }) > 0;
 const html = `<html>
 <body>
 <button
 id="likeButton"
 className="${isLiked ? 'liked' : ''}"
 data-postid="${Number(postId)}">
 ${likeCount} Likes
 </button>
 <script src="./frontend.js></script>
 </body>
 </html>`;
 res.text(html);
});

This works but leaves a few things to be desired.

For one, you probably don’t want the frontend logic to be “global”—ideally, it

should be possible to render multiple Like buttons, each receiving its own

data and maintaining its own local state. It would also be nice to unify the

display logic between the template in the HTML and the interactive JavaScript

event handlers.

We know how to solve these problems. That’s what component libraries are

for! Let’s reimplement the frontend logic as a declarative LikeButton

component:

For simplicity, let’s temporarily drop down to purely client-side rendering.

With purely client-side rendering, our server code’s job is just to pass the

initial props:

document.getElementById('likeButton').onclick = async function() {
 const postId = this.dataset.postId;
 if (this.classList.contains('liked')) {
 // ...
 } else {
 // ...
 }
};

function LikeButton({ postId, likeCount, isLiked }) {
 function handleClick() {
 // ...
 }

 return (
 <button className={isLiked ? 'liked' : ''}>
 {likeCount} Likes
 </button>
);
}

app.get('/posts/:postId', async (req, res) => {
 const { postId } = req.params;

Then the LikeButton can appear on the page with these props:

This makes sense, and is in fact exactly how React used to be integrated in

server-rendered applications before the advent of client-side routing. You’d

need to write a <script> to the page with your client-side code, and you

would write another <script> with the inline data (i.e. the initial props)

needed by that code.

Let’s entertain the shape of this code for a little bit longer. There’s something

curious happening: the backend code clearly wants to pass information to the

frontend code. However, the act of passing information is again stringly-typed!

 const userId = getCurrentUser();
 const likeCount = await db.likes.count({ where: { postId } });
 const isLiked = await db.likes.count({ where: { postId, userId } }) > 0;
 const html = `<html>
 <body>
 <script src="./frontend.js></script>
 <script>
 const output = LikeButton(${JSON.stringify({
 postId,
 likeCount,
 isLiked
 })});
 render(document.body, output);
 </script>
 </body>
 </html>`;
 res.text(html);
});

function LikeButton({ postId, likeCount, isLiked }) {
 function handleClick() {
 // ...
 }

 return (
 <button className={isLiked ? 'liked' : ''}>
 {likeCount} Likes
 </button>
);
}

What’s going on here?

What we seem to be saying is: have the browser load frontend.js , then find

the LikeButton function in that file, and then pass this JSON to that function.

So what if could just say that?

app.get('/posts/:postId', async (req, res) => {
 // ...
 const html = `<html>
 <body>
 <script src="./frontend.js></script>
 <script>
 const output = LikeButton(${JSON.stringify({
 postId,
 likeCount,
 isLiked
 })});
 render(document.body, output);
 </script>
 </body>
 </html>`;
 res.text(html);
});

import { LikeButton } from './frontend';

app.get('/posts/:postId', async (req, res) => {
 // ...
 const jsx = (
 <html>
 <body>
 <LikeButton
 postId={postId}
 likeCount={likeCount}
 isLiked={isLiked}
 />
 </body>
 </html>
);
 // ...
});

'use client'; // Mark all exports as "renderable" from the backend

We’re taking a conceptual leap there but stick with me. What we’re saying is,

these are still two separate runtime environments—the backend and the

frontend—but we’re looking at them as a single program rather than as two

separate programs.

This is why we set up a syntactic connection between the place that passes the

information (the backend) and the function that needs to receive it (the

frontend). And the most natural way to express that connection is, again, a

plain import .

Note how, here too, importing from a file decorated with 'use client' from

the backend doesn’t give us the LikeButton function itself. Instead, it gives a

client reference—something that we can turn into a <script> tag under the

hood later.

Let’s see how this works.

This JSX:

export function LikeButton({ postId, likeCount, isLiked }) {
 function handleClick() {
 // ...
 }

 return (
 <button className={isLiked ? 'liked' : ''}>
 {likeCount} Likes
 </button>
);
}

import { LikeButton } from './frontend'; // "/src/frontend.js#LikeButton"

// ...
<html>
 <body>
 <LikeButton
 postId={42}
 likeCount={8}
 isLiked={true}
 />
 </body>
</html>

produces this JSON:

{
 type: "html",
 props: {
 children: {
 type: "body",
 props: {
 children: {
 type: "/src/frontend.js#LikeButton", // A client reference!
 props: {
 postId: 42
 likeCount: 8
 isLiked: true
 }
 }
 }
 }
 }
}

And this information—this client reference—lets us generate the <script>

tags that load the code from the right file and call the right function under the

hood:

<script src="./frontend.js"></script>
<script>
 const output = LikeButton({
 postId: 42,
 likeCount: 8,
 isLiked: true

 });
 // ...
</script>

In fact, we also have enough information that we can run the same function

on the server to pregenerate the initial HTML, which we lost with client

rendering:

<!-- Optional: Initial HTML -->
<button class="liked">
 8 Likes
</button>

<!-- Interactivity -->
<script src="./frontend.js"></script>
<script>
 const output = LikeButton({
 postId: 42,
 likeCount: 8,
 isLiked: true
 });
 // ...
</script>

Prerendering the initial HTML is optional, but it works using the same

primitives.

Now that you know how it works, look over this code one more time:

import { LikeButton } from './frontend'; // "/src/frontend.js#LikeButton"

app.get('/posts/:postId', async (req, res) => {
 // ...
 const jsx = (
 <html>
 <body>
 <LikeButton
 postId={postId}
 likeCount={likeCount}
 isLiked={isLiked}
 />
 </body>
 </html>
);
 // ...

If you set aside your existing notions of how the backend and the frontend

code should interact, you’ll see that there’s something special happening

here.

The backend code references the frontend code by using an import with 'use

client' . In other words, it expresses a direct connection within the module

system between the part of the program that sends the <script> and the part

of the program that lives within that <script> . Since there is a direct

connection, it can be typechecked, you can use “Find All References”, and all

tooling is aware of it.

Like 'use server' before it, 'use client' makes the connection between

the server and the client syntactic. Whereas 'use server' opens a door from

the client to the server, 'use client' opens a door from the server to the

client.

It’s like two worlds with two doors between them.

Two Worlds, Two Doors

This is why 'use client' and 'use server' should not be seen as ways to

“mark” code as being “on the client” or “on the server”. That is not what they

});

'use client'; // Mark all exports as "renderable" from the backend

export function LikeButton({ postId, likeCount, isLiked }) {
 function handleClick() {
 // ...
 }

 return (
 <button className={isLiked ? 'liked' : ''}>
 {likeCount} Likes
 </button>
);
}

do.

Rather, they let you open the door from one environment to the other:

'use client' exports cl ient functions to the server. Under the hood, the

backend code sees them as references like

'/src/frontend.js#LikeButton' . They can be rendered as JSX tags and will

ultimately turn into <script> tags. (You can optionally pre-run those scripts

on the server to get their initial HTML.)

'use server' exports server functions to the cl ient. Under the hood, the

frontend sees them as async functions that call the backend via HTTP.

These directives express the network gap within your module system. They

let you describe a client/server application as a single program spanning two

environments.

They acknowledge and fully embrace the fact that these environments don’t

share any execution context—this is why neither import executes any code.

Instead, they only let one side refer to code on the other side—and pass

information to it.

Together, they let you “weave” the two sides of your program by creating

and composing reusable abstractions with logic from both sides. But I

think the pattern extends beyond React and even beyond JavaScript. Really,

this is just RPC at the module system level with a mirror twin for sending

more code to the client.

The server and the client are two sides of a single program. They’re

separated by time and space so they can’t share the execution context and

directly import each other. The directives “open the doors” across time and

space: the server can render the client as a <script> ; the client can talk back

to the server via fetch() . But import is the most direct way to express that,

so the directives let you use it.

https://overreacted.io/impossible-components/

Makes sense, doesn’t it?

P.S.

Here’s a little architectural diagram that you can use for your slides:

Discuss on Bluesky · Watch on YouTube · Edit on GitHub

Pay what you like

https://bsky.app/search?q=https%3A%2F%2Foverreacted.io%2Fwhat-does-use-client-do%2F
https://www.youtube.com/watch?v=31e5c67znF4
https://github.com/gaearon/overreacted.io/edit/main/public/what-does-use-client-do/index.md
https://ko-fi.com/gaearon
https://overreacted.io/

