
Alex Haydock

Home | Posts | Blogroll | About

This blog is hosted on a Nintendo Wii

2025-04-21 17:40 netbsd shitpost

 If you are reading this message, the experiment below is still ongoing. This page

was served to you by a real Nintendo Wii.

You can check the Wii’s live status page for system load info.

For a long time, I’ve enjoyed the idea of running general-purpose operating systems on

decidedly not-general-purpose hardware.

There’s been a few good examples of this over the years, including a few which were

officially sanctioned by the OEM. Back in the day, my PS3 ran Yellow Dog Linux, and I’ve

been searching for a (decently priced) copy of PS2 Linux for 10+ years at this point.

There are some other good unofficial examples, such as Dreamcast Linux, or PSPLinux.

But what a lot of these systems have in common is that they’re now very outdated. Or

they’re hobbyist ports that someone got running once and where longer-term support never

made it upstream. The PSP Linux kernel image was last built in 2008, and Dreamcast Linux is

even more retro, using a 2.4.5 kernel built in 2001.

I haven’t seen many of these projects where I’d be comfortable running one as part of an

actual production workload. Until now.

While browsing the NetBSD website recently, I noticed the fact that there was a ‘Wii’ option

listed right there on the front page in the ‘Install Media’ section, nestled right next to the

other first-class targets like the Raspberry Pi, and generic x86 machines.

Unlike the other outdated and unmaintained examples above, clicking through to the NetBSD

Wii port takes you to the latest stable NetBSD 10.1 release from Dec 2024. Even the daily

HEAD builds are composed for the Wii.

https://blog.infected.systems/
https://blog.infected.systems/posts/
https://blog.infected.systems/blogroll/
https://blog.infected.systems/about/
https://blog.infected.systems/tags/netbsd
https://blog.infected.systems/tags/shitpost
https://blog.infected.systems/status
https://www.destructoid.com/yellow-dog-linux-on-ps3-actually-works/
https://en.wikipedia.org/wiki/Linux_for_PlayStation_2
https://oldvcr.blogspot.com/2023/02/dusting-off-dreamcast-linux.html
https://psplinux.info/files/
https://netbsd.org/
https://nycdn.netbsd.org/pub/NetBSD-daily/HEAD/latest/evbppc/binary/gzimg/
https://nycdn.netbsd.org/pub/NetBSD-daily/HEAD/latest/evbppc/binary/gzimg/

As soon as I discovered this was fully supported and maintained, I knew I had to try

deploying an actual production workload on it. That workload is the blog you’re reading now.

Finding a sacrificial Wii

Our story begins at the EMF Camp 2024 Swap Shop - your premier source for pre-loved game

consoles, cardboard boxes full of 56k modems, and radioactive orphan sources.

I picked this up expecting to use it for homebrew games and emulation mostly, but I don’t

think it expected this fate.

Is it fast enough?

So we have a spare Wii. And an OS with mainline support. But is a Wii actually fast enough to

handle this as a production workload?

The single-core ‘Broadway’ CPU in the Wii is part of IBM’s continued evolution of the PowerPC

750 lineup, dating all the way back to Apple’s iconic 1998 Bondi Blue fishtank iMac. Although

Broadway is one of the later 750 revisions, the commercially-available equivalent chip - the

PowerPC 750CL - has a maximum TDP of only 9.8 W, and clocks about 33% higher than the

version in the Wii.

So with a single-core chip based on a late-90s architecture and a TDP well under 10 W, it’s

clear that we’re probably fairly contstrained here in terms of compute performance.

With that said, one of the other PowerPC 750 deployments you might be familiar with is

currently floating 1,500,000 km from Earth mapping the deepest reaches of the universe in

more detail than humanity has ever seen before. So if I can’t get this thing serving a static

website, then I think it’s probably time to execute on my long-term plan of retiring from tech

and opening a cat cafe.

On a more serious note, you can read about the James Wii Space Telescope’s use of the

PowerPC 750 in this NASA presentation. The 750 actually gets a lot of use in spaceflight and

satellite applications because there is a radiation-hardened version available, known as the

RAD750. Some other recent uses of the chip include both the Mars Curiosity and

Perseverance rovers.

Installing NetBSD on the Wii

Okay, Nintendo lawyers avert your eyes.

It had been a long time since I softmodded a Wii. I remember the Twilight Hack, which

involved exploiting a buffer overflow in the Twilight Princess save game handler to run

unsigned code.

Things are much easier these days. The Wilbrand exploit seems to be what people generally

recommend now. Like some other exploits, it takes advantage of the fact that an SD card can

be used to store and retrieve messages from the Wii Message Board. Exploting this allows

unsigned code execution, which allows us to boot the HackMii tool that installs the

Homebrew Channel.

https://ntrs.nasa.gov/api/citations/20150019915/downloads/20150019915.pdf
https://en.wikipedia.org/wiki/RAD750
https://en.wikipedia.org/wiki/Curiosity_(rover)
https://en.wikipedia.org/wiki/Perseverance_(rover)
https://www.youtube.com/watch?v=4BlpONgj74A
https://wiibrew.org/wiki/Wilbrand
https://www.gamebrew.org/wiki/HackMii_Installer_Wii

It’s an easy mod which just requires knowing the MAC address of the console and generating

a few files to load from an SD card. There’s a handy browser-based tool here which does all

of the hard work for you.

I did have some issues using a larger SDHC card to run the Wilbrand exploit, but had the best

luck with a 1GB non-SDHC card. SD card compatibility seems to be a known issue for Wii

homebrew, but overall I’d still call the process fairly painless.

Once we’ve hacked the console, we should have the Homebrew Channel available in our Wii

Menu:

Now we can prepare our NetBSD SD card. We do this by downloading the wii.img.gz image

from the front page of the NetBSD site.

For this card, I opted to use a fairly speedy 32GB SDHC card. The Wii doesn’t support SDXC

or newer cards, which means we’re limited to 32GB. Larger flash devices also generally tend

to be faster and more resilient than smaller ones. And NetBSD seems a lot less bothered by

living on a larger card than the Wilbrand exploit was. So overall I’d recommend getting a

decent quality fast 32GB card if you want to try this.

https://wilbrand.donut.eu.org/
https://wiibrew.org/wiki/SD/SDHC_card_compatibility_tests
https://netbsd.org/

We can unpack and write this image however we please, but I’m a fan of using the Raspberry

Pi Imager because it’ll do the work of extracting the image and verifying it post-write for us:

At this point, things are very easy. The NetBSD Wii image has all the necessary metadata &

structure needed to boot directly from the Homebrew Channel as if it were any other kind of

homebrew app. I think there’s a lot of credit due here to NetBSD developer Jared McNeill,

who seems to be the main author of the Wii port.

Placing our SD card in the console and launching the Homebrew Channel is all we need to do

to prepare ourselves to launch NetBSD:

https://mastodon.sdf.org/@jmcwhatever

Once booted into NetBSD, we can use a USB keyboard just fine, but it will be easiest to get

SSH working so we can manage the system remotely. The SSH daemon is already running

out-of-the-box, so the only changes we need to make are to set a password for the root user

and then enable logging in as root by adding PermitRootLogin yes to the sshd_config .

You could set up an unprivileged user or do anything else you fancy here but I was keen to

get SSH going ASAP, as due to the absence of HDMI-enabled screens in my server-area

laziness I was doing this bit using a capture card and Photo Booth on macOS which doesn’t

actually support disabling the image-flip on the video feed:

If you thought it was hard to exit Vim, try doing it back to front.

After installation, I set a static network config by editing /etc/ifconfig.axe0 and restarted

the host.

On that note, I’m using the official RVL-015 Wii LAN Adapter. I went to great lengths to track

down one of these for a decent price for the best chance of compatibility. On reflection, this

probably wasn’t needed as by the time we’re booted into NetBSD we should have all of

NetBSD’s drivers available to us, so I expect most generic USB adapters would probably work

(in theory!).

If anyone is wondering though, here are the specifics of the adapter and chipset, taken from

dmesg :

[2.089988] axe0 at uhub2 port 1

[2.089988] axe0: ASIX Electronics (0x0b95) AX88772 USB 2.0 10/100 ethernet control

[2.549988] ukphy0 at axe0 phy 16: Asix Semiconductor AX88772 internal PHY (OUI 0x0

[2.559992] ukphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto

[2.559992] axe0: Ethernet address 9c:e6:35:73:f0:44

Package management

After restarting, I installed NetBSD’s pkgin package manager by setting some env vars and

then using pkg_add pkgin :

export PATH="/usr/pkg/sbin:/usr/pkg/bin:$PATH"

export PKG_PATH="https://cdn.NetBSD.org/pub/pkgsrc/packages/NetBSD/evbppc/10.1/All/"

pkg_add pkgin

After this, I was able to use pkgin to install a bunch of useful packages - most importantly

including our lighttpd web server, which I’ve picked due to it being slim and well-suited for

resource constrained environments:

pkgin install bsdfetch iperf3 lighttpd nano rsync

After that, I copied the basic lighttpd sample config, and enabled and started it:

cp -fv /usr/pkg/share/examples/rc.d/lighttpd /etc/rc.d

echo 'lighttpd=YES' >> /etc/rc.conf

/etc/rc.d/lighttpd start

By default, lighttpd is set up to serve static content from /srv/www/htdocs . Since my blog

is a collection of static pages built with Hugo, I was able to simply rsync these files over and

within seconds I had the system serving my site over standard HTTP.

Is it fast enough? (addendum)

Alright, you got me. It turns out that while a PPC 750 might be enough to map the futhest

reaches of the universe, a bit of soak testing suggests it does struggle a bit when trying to

concurrently serve a lot of pages encrypted with modern TLS.

I tried freeing up resources by disabling a bunch of services I don’t need that are running out

of the box on NetBSD:

sed -i 's/^dhcpcd=.*/dhcpcd=NO/' /etc/rc.conf || echo 'dhcpcd=NO' >> /etc/rc.conf

sed -i 's/^inetd=.*/inetd=NO/' /etc/rc.conf || echo 'inetd=NO' >> /etc/rc.conf

sed -i 's/^mdnsd=.*/mdnsd=NO/' /etc/rc.conf || echo 'mdnsd=NO' >> /etc/rc.conf

sed -i 's/^postfix=.*/postfix=NO/' /etc/rc.conf || echo 'postfix=NO' >> /etc/rc.conf

I also disabled ntpd , which was using a staggering 15% of the whole system’s RAM:

USER PID %CPU %MEM COMMAND

root 9161 0.0 15.6 /usr/sbin/ntpd -p /var/run/ntpd.pid -g

Unfortunately it seems ntpd is definitely necessary to keep the system clock in-check. I’m

not sure whether the Wii just drifts a lot, whether it’s specific to NetBSD on the Wii, or

whether the clock battery in what may be a nearly 20 year old console has given up but I got

some interesting and quite indignant sounding error messages after disabling this:

To compensate, I cheated by adding ntpd -q -g to the main crontab , so the system would

run it hourly at :42 min past the hour. We still get timesync, but we don’t need to sacrifice a

sixth of our RAM keeping it resident:

42 * * * * /usr/sbin/ntpd -q -g

Even after freeing up the resources above, it seems like serving multiple encrypted requests

in parallel was a struggle for the 750, so I opted to move the TLS termination for the blog to

a Caddy instance sitting in front of the Wii.

I have Caddy acting as a reverse proxy to the Wii, handling encryption and cert management

with ACME. Importantly, there are no caching options enabled in Caddy. Every

request the site serves is being serviced directly by the Wii - including the large

number of images on this post which I’ll almost certainly regret adding. I optimised as much

as I could, but this page is still almost exactly 1 MB when all of the content is loaded.

Through this method, I’ve also been able to sinkhole LLM slop-scrapers at Caddy’s level, by

dropping requests from known scraper User Agents before they’re forwarded to the Wii.

Hopefully that might help to keep our single core chugging along without too much distress.

Status monitoring

Moving the SSL termination to Caddy also gives me the advantage of enabling Caddy’s

Prometheus exporter, so I can load it into my InfluxDB + Grafana stack and monitor site load

without putting a bunch of additional stress on the Wii.

https://github.com/ai-robots-txt/ai.robots.txt/blob/main/robots.txt

But I’m still interested (and I’m sure you are too) in monitoring the general state of the Wii

resources as this post goes live.

Considering I had to disable the NTP client for using too much RAM, I think running

something like a Prometheus exporter directly on the Wii is right out of the window to begin

with. So I put together a simple shell script that runs from the crontab every 15 min,

outputting some system stats to a basic HTML file in the webroot.

⣤⣤⣤⠀⠀⠀⠀⠀⣀⣤⣄⠀⠀⠀⠀⠀⣠⣤⣤⠀⠀⣴⣿⣦⠀⠀⢀⣶⣿⣦

⢸⣿⣿⡇⠀⠀⠀⢠⣿⣿⣿⣇⠀⠀⠀⠀⣿⣿⡿⠀⠀⠻⣿⠟⠀⠀⠈⠿⣿⠟

⠀⢿⣿⣷⠀⠀⠀⣼⣿⡿⣿⣿⡀⠀⠀⢸⣿⣿⠇⠀⠀⣀⣀⡀⠀⠀⠀⣀⣀⡀

⠀⠸⣿⣿⡆⠀⢠⣿⣿⠃⢿⣿⣇⠀⠀⣿⣿⡟⠀⠀⠀⣿⣿⣿⠀⠀⠀⣿⣿⣿

⠀⠀⢿⣿⣷⠀⣸⣿⡟⠀⠘⣿⣿⠀⢸⣿⣿⠇⠀⠀⠀⣿⣿⣿⠀⠀⠀⣿⣿⣿

⠀⠀⠸⣿⣿⣄⣿⣿⠃⠀⠀⢿⣿⣇⣿⣿⡿⠀⠀⠀⠀⣿⣿⣿⠀⠀⠀⣿⣿⣿

⠀⠀⠀⢿⣿⣿⣿⡟⠀⠀⠀⠸⣿⣿⣿⣿⠃⠀⠀⠀⠀⣿⣿⣿⠀⠀⠀⣿⣿⣿

⠀⠀⠀⠘⢿⣿⡿⠁⠀⠀⠀⠀⠻⣿⣿⠟⠀⠀⠀⠀⠀⣿⣿⣿⠀⠀⠀⣿⣿⣿

blog.infected.systems NetBSD Wii Status

Generated on: Mon Apr 21 16:30:00 UTC 2025

=== uname -a ===

NetBSD wii 10.1 NetBSD 10.1 (WII) #0: Mon Dec 16 13:08:11 UTC 2024 mkrepro@mkre

pro.NetBSD.org:/usr/src/sys/arch/evbppc/compile/WII evbppc

=== uptime ===

 4:30PM up 25 mins, 1 user, load averages: 0.00, 0.00, 0.00

[...]

You can view the full status page at blog.infected.systems/status.

Final observations

Honestly, this worked way better and was far easier than I was expecting. Naturally, there

are some downsides to the setup here though.

Rebooting NetBSD reboots the whole console, and not just the NetBSD ‘app’, so you’ll find

yourself back at the Wii Menu after any kernel patch or system upgrade. Yes, this does mean

that the Wiimote and sensor bar in your server cupboard are now a vital component of the

production infrastructure.

https://blog.infected.systems/status

I was reasonably pleased with the power consumption too. Some testing based on stats from

my UPS monitoring suggest that when idling, the Wii is adding a fairly consistent ~18 W to

my overall homelab usage.

By my calculations, that means I can expect the Wii to use ~13.2 kWh/month, which on my

fairly expensive UK power tariff comes out to around £3.47/month - which does actually

make this cheaper than most of the VPSes I can find around the obvious cloud providers. So

when you’re looking for your next VPS… you know what to consider.

This was a fun experiment for a rainy day over a long weekend. I’ll probably keep it going for

a while if it actually continues to work as well as it started. I’m often interested in applying

artificial constraints to the things I deploy, as I find that’s when I learn best.

Who knows, maybe I’ll have been forced to become an expert in NetBSD TCP kernel tunables

by this time next week…

LATEST POSTS

This blog is hosted on a Nintendo Wii

Working around the IPv6-only RDNSS expiry bug affecting macOS and iOS

Building an IPv6-focused OpenBSD home router

Connecting to Tor from IPv6-only clients

Hugs of Death: How should we think about resilience in the IndieWeb?

Home | GitHub | Mastodon | .onion | RSS

https://blog.infected.systems/posts/2025-04-21-this-blog-is-hosted-on-a-nintendo-wii/
https://blog.infected.systems/posts/2024-12-18-working-around-macos-and-ios-rdnss-expiry-bug/
https://blog.infected.systems/posts/2024-12-07-building-an-ipv6-focused-openbsd-home-router/
https://blog.infected.systems/posts/2024-12-05-connecting-to-tor-from-ipv6-only-clients/
https://blog.infected.systems/posts/2024-12-04-hugs-of-death/
https://blog.infected.systems/
https://github.com/alexhaydock
https://infosec.exchange/@alexhaydock
http://infected2ffce6vfaeuah77ooambvlj7ne7roujuvpqvb54ha5wbjnad.onion/
https://blog.infected.systems/posts/index.xml

