
fotis.xyz

The new Cookie Store API

14 April 2025

by Fotis Papadogeorgopoulos

Historically, in a browser, programmatic access to cookies has revolved

around the document.cookie

 API, which is simply a string

getter/setter. To read a single cookie from that string, you must parse

the whole string into a structured format. To write a single cookie to that

string, you would have the cookie in a structured format and serialise it

to a string, prior to setting document.cookie . There are popular npm

libraries to make this dance more ergonomic, such as js-cookie

.

However, custom libraries still come at a performance cost. There are still

parsing and serialisation costs to pay, and my understanding is that

these costs increase as the cookie string becomes larger. I would also

note that document.cookie access is synchronous. If it ends up in a

particularly hot loop, it could impact main thread responsiveness.

Finally, there has been no single way to keep the cookie string as the

source of truth for managing state, because there are no associated

change events. This becomes relevant in real-world applications, that

might be syncing various system-wide and app-specific user preferences

via cookies.

While this has been true historically, there is a new Cookie Store API

 in

 (https://developer.mozilla.org/en-

US/docs/Web/API/Document/cookie)

(https://www.npmjs.com/package/js-cookie)

(https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API)

https://fotis.xyz/
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
https://www.npmjs.com/package/js-cookie
https://www.npmjs.com/package/js-cookie
https://www.npmjs.com/package/js-cookie
https://www.npmjs.com/package/js-cookie
https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API
https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API
https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API

browsers nowadays, that allows structured manipulation of cookies, in a

performant way. I say “new”, even though it has existed in Chromium-

based browsers for the past 4 years. However, with Safari 18.4

landing support at the end of March 2025, there are now two

browsers shaping this API, making me more comfortable using it as a

progressive enhancement.

Firefox 137

also seems to support this API, but I was not able to use cookieStore

in my tests on Firefox 137.0.1 (aarch64). It might be landing in Firefox

138 instead.

Here is the caniuse support table, for reference:

Can I Use cookie-store-api? Data on support for the cookie-store-api feature across the major

browsers. (Embed Loading)

(https://developer.apple.com/documentation/safari-release-notes/safari-18_4-

release-

notes#:~:text=Added%20support%20for%20the%20Cookie%20Store%20API)

 (https://github.com/mdn/browser-compat-data/issues/26374)

https://developer.apple.com/documentation/safari-release-notes/safari-18_4-release-notes#:~:text=Added%20support%20for%20the%20Cookie%20Store%20API
https://developer.apple.com/documentation/safari-release-notes/safari-18_4-release-notes#:~:text=Added%20support%20for%20the%20Cookie%20Store%20API
https://developer.apple.com/documentation/safari-release-notes/safari-18_4-release-notes#:~:text=Added%20support%20for%20the%20Cookie%20Store%20API
https://developer.apple.com/documentation/safari-release-notes/safari-18_4-release-notes#:~:text=Added%20support%20for%20the%20Cookie%20Store%20API
https://developer.apple.com/documentation/safari-release-notes/safari-18_4-release-notes#:~:text=Added%20support%20for%20the%20Cookie%20Store%20API
https://developer.apple.com/documentation/safari-release-notes/safari-18_4-release-notes#:~:text=Added%20support%20for%20the%20Cookie%20Store%20API
https://developer.apple.com/documentation/safari-release-notes/safari-18_4-release-notes#:~:text=Added%20support%20for%20the%20Cookie%20Store%20API
https://github.com/mdn/browser-compat-data/issues/26374
https://github.com/mdn/browser-compat-data/issues/26374

I see three main benefits to such an API:

1. performance (asynchronous access, less serialisation back-and-forth,

smaller bundle size)

2. using the cookie store directly for state management, avoiding

synchronisation bugs

3. standardisation as a way to build shared (cookie) SDKs with less per-

library variance.

Let’s dive into each of these!

How to use it

MDN has the goods when it comes to documentation

, but here

is a brief example of using cookieStore

:

async function setDarkModePreference() {

 try {

 await cookieStore.set('theme', 'dark');

 } catch (err) {

 // a nice benefit of the Cookie Store API is immediate

errors,

 // instead of needing to round-trip writing and reading

 }

}

async function resetThemePreference() {

(https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API)

 (https://developer.mozilla.org/en-

US/docs/Web/API/CookieStore)

https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API
https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API
https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API
https://developer.mozilla.org/en-US/docs/Web/API/CookieStore
https://developer.mozilla.org/en-US/docs/Web/API/CookieStore
https://developer.mozilla.org/en-US/docs/Web/API/CookieStore
https://developer.mozilla.org/en-US/docs/Web/API/CookieStore

 return cookieStore.delete('theme');

}

Note that all the methods of the CookieStore interface

are asynchronous.

Part 1: Performance

The string-based interface of document.cookie is awkward to work with,

with a fair amount of back-and-forth from strings to more structured

representations. Parsing the cookie string is not trivial, but we can

assume that shared ecosystem libraries follow the spec, and are well-

tested and fuzzed.

Libraries can make optimisations, such as exiting early when they find the

relevant cookie in the string. I am a fan of the js-cookie library, plus

their source code makes for a nice read

.

Even with optimisations, access to document.cookie is synchronous.

If it ends up in a particularly hot loop, it could impact main

thread responsiveness.

There is also the impact to the bundle size of an application, though js-

cookie specifically is tiny, at 780B min+gzip

.

Overall, a native, async-first way to manipulate cookies would make for

a nice performance improvement, even compared to optimised

ecosystem libraries.

 (https://github.com/js-cookie/js-

cookie/blob/main/src/api.mjs)

(https://bundlephobia.com/package/js-cookie@3.0.5)

https://github.com/js-cookie/js-cookie/blob/main/src/api.mjs
https://github.com/js-cookie/js-cookie/blob/main/src/api.mjs
https://github.com/js-cookie/js-cookie/blob/main/src/api.mjs
https://github.com/js-cookie/js-cookie/blob/main/src/api.mjs
https://github.com/js-cookie/js-cookie/blob/main/src/api.mjs
https://bundlephobia.com/package/js-cookie@3.0.5
https://bundlephobia.com/package/js-cookie@3.0.5
https://bundlephobia.com/package/js-cookie@3.0.5
https://bundlephobia.com/package/js-cookie@3.0.5

Part 2: Cookie State Management

While I am a fan of the asynchronous access and the reduced bundle

size, I am an even bigger fan of the ‘change’ even that Cookie

Store provides:

cookieStore.addEventListener('change', (event) => {

 console.log(event);

});

Here is the reference for CookieChangeEvent

.

Imagine we have a web app that allows users to store their site-specific

theme preference: light , dark and auto (meaning that it defers to

system settings). When the user selects their preference, we want to

persist it in a cookie, so that subsequent visits from the server get the

correct theme by default. At the same time, different parts of the

application might consult the theme mode in JS. How would we ensure

that we have a single source of truth?

Since different parts of the application are interested in the theme

information, that state has to be kept somewhere centrally. Ideally, we

would have the browser manage the state, since the browser keeps the

cookies in the first place. However, the document.cookie API does not

expose a change event, so any part of the UI other than the one making

the change would not be able to react to it.

The next best thing we could do is to manage a mirror of the state

ourselves, and make changes through a single blessed setter. In React

(https://developer.mozilla.org/en-

US/docs/Web/API/CookieChangeEvent/CookieChangeEvent)

https://developer.mozilla.org/en-US/docs/Web/API/CookieChangeEvent/CookieChangeEvent
https://developer.mozilla.org/en-US/docs/Web/API/CookieChangeEvent/CookieChangeEvent
https://developer.mozilla.org/en-US/docs/Web/API/CookieChangeEvent/CookieChangeEvent
https://developer.mozilla.org/en-US/docs/Web/API/CookieChangeEvent/CookieChangeEvent
https://developer.mozilla.org/en-US/docs/Web/API/CookieChangeEvent/CookieChangeEvent

terms, we could keep a custom Context, either for all cookie values or for

a specific one. Here is a sketch for a theme cookie specifically:

import Cookie from 'js-cookie';

import type { PropsWithChildren } from 'react';

import {

 useCallback,

 createContext,

 useContext,

 useEffect,

 useMemo,

 useState,

} from 'react';

const THEME_COOKIE_NAME = 'theme';

type Theme = 'light' | 'dark' | 'auto';

// Like a setState tuple

type ContextValue = [Theme, (theme: Theme) => void];

const ThemeContext = createContext<ContextValue | undefined>

(undefined);

export function useThemeState() {

 const ctx = useContext(ThemeContext);

 if (!ctx) {

 throw new Error('useThemeState must be used in a

ThemeManager tree');

 }

 return ctx;

}

export function ThemeManager({ children }: PropsWithChildren)

{

 const [theme, setStoredTheme] = useState<Theme>();

 useEffect(() => {

 // NOTE: this is incomplete; in reality you might use a

one-off useSyncExternalStore and should also do validation

 setStoredTheme(Cookie.get(THEME_COOKIE_NAME));

 }, [setStoredTheme]);

 const setTheme = useCallback(

 (theme: Theme) => {

 Cookie.set(THEME_COOKIE_NAME, theme);

 setStoredTheme(theme);

 },

 [setStoredTheme]

);

 const memoValue = useMemo(() => [theme, setTheme], [theme,

setTheme]);

 return (

 <ThemeContext.Provider value={memoValue}>{children}

</ThemeContext.Provider>

);

}

Modulo some implementation details, this works! After the initial setup, I

do not find the mirroring to be a big deal (the React state has to live

somewhere after all), but the opportunity for state to go out of sync

worries me from time to time.

We can now do a bit better, by using the change event. Since there is

a complete set of APIs to read, write and be notified of changes, we

could use React’s built-in syncing mechanisms:

import { useCallback, useEffect, useState } from 'react';

const THEME_COOKIE_NAME = 'theme';

type Theme = 'light' | 'dark' | 'auto';

export function useThemeState() {

 // An SSR/hydration snapshot is left as an exercise for the

reader

 const [theme, setStoredTheme] = useState<Theme | undefined>

(undefined);

 const onChange = useCallback(

 (ev: CookieChangeEvent) => {

 const deleted = ev.deleted.find((c) => c.name ===

THEME_COOKIE_NAME);

 if (deleted) {

 setStoredTheme(undefined);

 return;

 }

 const changed = ev.changed.find((c) => c.name ===

THEME_COOKIE_NAME);

 if (changed) {

 setStoredTheme(changed.value);

 return;

 }

 },

 [setStoredTheme]

);

 useEffect(() => {

 cookieStore.addEventListener('change', onChange);

 return () => {

 cookieStore.removeEventListener('change', onChange);

 };

 }, [onChange]);

 const setTheme = useCallback((theme: Theme) => {

 cookieStore.set(THEME_COOKIE_NAME, theme);

 }, []);

 return [theme, setTheme];

}

This allows us to get rid of the context, using cookieStore directly. I

initially wanted to use useSyncExternalStore

, as that would allow

ditching the extra useState altogether. However, useSyncExternalStore

would not take the new value from the change event, but rather from a

separate cookieStore.get call. But since the latter is asynchronous, this

does not match the sync requirement of the snapshot function that

React expects.

(A harebrained idea would be to use the synchronous document.cookie

API for the useSyncExternalStore snapshot, but ehh, I’m not a big fan of

mixing the two APIs, given the interop and performance points.)

(https://react.dev/reference/react/useSyncExternalStore)

https://react.dev/reference/react/useSyncExternalStore
https://react.dev/reference/react/useSyncExternalStore
https://react.dev/reference/react/useSyncExternalStore

Intermission: Adopting CookieStore API Today

You might be wondering how you can use this API if it is not supported

everywhere yet.

As shown in the theme mode example, it is likely that your application

already has a centralised point that mirrors cookie state, and changes

are usually tied to user actions. In those cases, you could use the

CookieStore API where available, falling back to your favourite JS

userland implementation (like js-cookie) plus local state management.

// It seems reasonable to assume that support for the

CookieStore API

// is a property of the environment, and we do not need to

react dynamically to it :)

const supportsCookieStore = 'cookieStore' in window;

const ThemeManagerUserland = ({ children }) => {

 // Does internal book-keeping of the state, as shown

previously

 return <ThemeProvider value={memoValue}>{children}

</ThemeProvider>;

};

const ThemeManagerNative = ({ children }) => {

 // Keeps state backed by cookieStore change events, and

passes on the setter

 return <ThemeProvider value={memoValue}>{children}

</ThemeProvider>;

};

export const ThemeManager = supportsCookieStore

 ? ThemeManagerNative

 : ThemeManagerUserland;

You might decide to split the hook or fork the logic internally, instead of

splitting the providers. It really is up to you and your preferences / what

is idiomatic in your application.

For one-off manipulation of cookies, you can still fall back to a userland

implementation, but bear in mind that your call-sites might have to

change to be asynchronous, given that the CookieStore API is

asynchronous all the way,

import { setCookie as setCookieFallback } from 'my-favorite-

cookie-library';

export async function setCookie(cookie: string, value:

string) {

 if ('cookieStore' in window) {

 return cookieStore.set(cookie, value);

 }

 setCookieFallback(cookie, value);

 return;

}

Feel free to make this interface whatever you wish; I made it (string,

string) for the sake of a simple example. The full Cookie Store API also

provides a more structured way to set cookies than just a key and a

value, via an option argument

:

 (https://developer.mozilla.org/en-

US/docs/Web/API/CookieStore/set#options)

https://developer.mozilla.org/en-US/docs/Web/API/CookieStore/set#options
https://developer.mozilla.org/en-US/docs/Web/API/CookieStore/set#options
https://developer.mozilla.org/en-US/docs/Web/API/CookieStore/set#options
https://developer.mozilla.org/en-US/docs/Web/API/CookieStore/set#options

cookieStore.set({

 name: 'theme',

 value: 'dark',

 path: '/',

 partitioned: false,

 sameSite: 'strict',

});

You would tweak your fallback function interface to account for this

form as well, if you need it.

There are no TypeScript types for the Cookie Store API yet. TypeScript

only adds an API to the shared dom types once it is supported by all

major browsers, which I find reasonable. Now that Chrome, Safari and

Firefox support the API, I’m hoping for the types to be added soon. A

good opportunity for an issue and a PR, perhaps…

Part 3: Standardisation

Finally, one of the last benefits of standardisation, is the process of

standardising itself! You might have a family of websites under a shared

domain, that all manipulate the same set of cookies. You might decide

to make an SDK to share that logic, for example to always validate the

cookies values.

If you use a userland library for this task, you will have to make decisions

about the encoding of values (or have the library make them for you). In

turn, this might hurt interop with other libraries. For example, js-cookie

spells this out:

This project is RFC 6265

compliant. All special characters that are not allowed

in the cookie-name or cookie-value are encoded with

each one’s UTF-8 Hex equivalent using percent-encoding

.

The only character in cookie-name or cookie-value that is allowed

and still encoded is the percent % character, it is escaped in order

to interpret percent input as literal.

Please note that the default encoding/decoding strategy is meant

to be interoperable only between cookies that are read/written by js-

cookie

. To override the default

encoding/decoding strategy you need to use a converter.

By using the standard API, you would use the agreed-upon behaviour,

whichever it might be. Callers could rely upon that behavior with

confidence. I’ll admit that I have not tested how exactly the Cookie

Store API does value encoding (yet).

Depending on your state management and the scope of such an SDK,

you might expose specific hooks to notify your application of cookie

changes. Instead, you could rely on the standard CookieChangeEvent to

notify the application, simplifying the integration with the SDK.

It’s good to imagine the future, though I recognise that until adoption is

reliably wide, such SDKs will likely paper over the document.cookie and

Cookie Store APIs internally, and not rely on it externally.

Wrapping up

 (http://tools.ietf.org/html/rfc6265#section-4.1.1)

(http://en.wikipedia.org/wiki/Percent-encoding)

 (https://github.com/js-cookie/js-

cookie/pull/200#discussion_r63270778)

http://tools.ietf.org/html/rfc6265#section-4.1.1
http://tools.ietf.org/html/rfc6265#section-4.1.1
http://en.wikipedia.org/wiki/Percent-encoding
http://en.wikipedia.org/wiki/Percent-encoding
http://en.wikipedia.org/wiki/Percent-encoding
https://github.com/js-cookie/js-cookie/pull/200#discussion_r63270778
https://github.com/js-cookie/js-cookie/pull/200#discussion_r63270778
https://github.com/js-cookie/js-cookie/pull/200#discussion_r63270778
https://github.com/js-cookie/js-cookie/pull/200#discussion_r63270778
https://github.com/js-cookie/js-cookie/pull/200#discussion_r63270778

We looked at some of the current ergonomic and performance issues of

the document.cookie API, and introduced the Cookie Store API as a

contemporary alternative. We looked at some semi-realistic examples

of how cookie manipulation fits with state management in applications,

and also imagined what a standard Cookie Store API could mean for

the future.

I hope this gives you enough to experiment with; please get in touch if

you have thoughts! I am especially interested to hear use-cases in your

applications, and how adoption might look for what you are building.

