
Avoid the State

Synchronization Trap

April 14, 2025 · 12 min read

This post is about a bad code pattern I see quite often. It’s about state management,

particularly state synchronization. Often it is a source of bugs, glitches, and performance

problems.

Usually it is solvable by adjusting the state shape. More precisely, splitting the state into

pieces and merging the pieces later in selectors, render functions, or custom hooks. An

interesting fact is that one of those states is empty or undefined, but the UI renders

desired items anyway. It might seem unintuitive, but bear with me.

During the Redux era, we discussed state shape a lot. It was called state normalization.

Nowadays, it is rarely touched, even though it is still important. To make my thoughts

easier to understand, I sometimes use Redux terminology, like selectors and actions,

throughout this article.

I’ll present the problem using an example of an orders table. The example is quite long, but

I believe it is useful. It is based on a real-world application. I simplify, but in principle, I saw

it in a real codebase.

One last note before we start: I talk about React but the ideas are applicable to any

modern FE framework (regardless if signal-based or not).

Example

Let’s illustrate state synchronization through an evolving example, starting simply and

becoming increasingly complex over several hypothetical years.

2025: List of Orders

Date # Customer Amount

It’s the year 2025, and you work on this cool project called Outstanding Overview of

Opulus Orders (OOoOO). You work on a page with a data table: a list of orders. Component

OrdersList uses hook useOrders , which internally uses TanStack Query to fetch orders

from a backend API. With the given orders data, you use a UI component Table , which

renders it. Easy peasy.

2026: Custom Columns

Date # Customer Amount

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

function OrdersList() {
 const orders = useOrders();
 return <Table data={orders} />;
}

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

⚙

function OrdersList() {
 const [columns] = useContext(ColumnsCtx)
 const orders = useOrders(columns)
 return <Table data={orders} />
}

const initColumns = [
 { attribute: 'date' },
 { attribute: 'order' },

Fast forward. It’s the year 2026, and your customer’s business has grown internationally,

introducing new requirements. They collect additional attributes about Opulus orders, like

currency and country. They want to allow users to show more columns in the table. So you

add a ⚙ button beside the table header. When the user clicks it, a dropdown with available

columns appears. The user can select and deselect which columns are visible.

Since visible columns might change, they can’t be a constant and you need to store them

in some kind of updatable state. They need to be accessed from multiple components (like

OrdersList and the ⚙ button dropdown). To avoid prop drilling, we store columns in some

higher-level state. Here I use React Context ColumnsCtx , but feel free to imagine Zustand,

Jotai, Redux, or URL. It does not matter for our purposes. You initialize the state with a

constant containing the default columns. (If URL surprised you, you might want to read my

previous article Conceptual Model of React and RSC).

2027: Filters

Date # Customer Amount

 { attribute: 'customer' },
 { attribute: 'amount' },
]

function ColumnsProvider() {
 const [columns, setColumns] = useState(initColumns)
 ...
}

Date # Customer Amount

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

⚙

function Filters() {
 const [filters] = useContext(FiltersCtx)
 return filters.map(filter => (
 <Filter filter={filter} />

https://ondrejvelisek.github.io/conceptual-model-of-react-and-rsc/

Fast forward to 2027. The customer’s business continues to grow. There are many Opulus

orders now. Therefore, the customer wants you to implement filtering rows by values. The

user should be able to filter only visible columns. Not a trivial feature request, but let’s do

it.

You add a new Filters component. Similarly to columns, the visible filters might change.

They can’t be a constant and you need to store them in a state. They are required by

multiple components. So to avoid prop drilling, you store them in a new Context

FiltersCtx .

Filtering works as follows: The user selects a filter value, e.g., Customer ‘Ondrej’. The state

setter is called from Filter component. The FiltersCtx state value is updated. The

reactivity system rerenders the OrdersList component. useOrders hook receives updated

state and refetches data with new filters .

You can try it by yourself with interactive working example above.

State Initialization

))
}

function OrdersList() {
 const [columns] = useContext(ColumnsCtx)
 const [filters] = useContext(FiltersCtx)
 const orders = useOrders(columns, filters)
 return <Table data={orders} />
}

type Filters = Array<{
 attribute: string,
 operator?: '='|'>'|'<',
 values?: Array<string|number>
}>

function FiltersProvider() {
 const [filters, setFilters] = useState()
 ...
}

Seems nice. You try to run the code, and… it does not show any filters. Can you guess

why? (Note I’ve already fixed the example above, to illustrate what we are trying to build)

It is because the filters context is empty. We need to initialize the filter state. useState has

an initialization property. We can use it.

Date # Customer Amount

It shows the filters now. But…

When you add or remove columns, the filters are not updated. The desired behavior is:

when the user adds a new column, the filter for this column is also added. In other words,

synchronize columns and filters states. Maybe this will help?

Nope. Filters are still static because the useState argument is used at the first render only.

We need to update the filters state somehow.

Date # Customer Amount

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

⚙

const initColumns = [
 { attribute: 'date' },
 { attribute: 'order' },
 { attribute: 'customer' },
 { attribute: 'amount' },
]

function FiltersProvider() {
 const [filters, setFilters] = useState(initColumns)
 ...
}

function FiltersProvider() {
 const [columns] = useContext(ColumnsCtx)
 const [...] = useState(columns)
 ...
}

State Synchronization

1. Direct Setters Approach

Date # Customer Amount

This works. Finally… Oops. You forgot to synchronize the remove column handler. Fast

forward. 2028. You are implementing reset columns to default. Oops. Forgot to reset filters

as well. Fast forward. 2029. Implementing column presets. Oops. Forgot to update filters as

well. Fast forward. 2030. Oops…

You got the idea. Every time new functionality updating columns is added, you must also

remember to update the filters. This is unmaintainable and error-prone.

+ Simple

- Unmaintainable in a long run

2. Gate Setter Approach

Date # Customer Amount

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

⚙

const onAddColumnClick = (attribute) => {
 addColumn(attribute)
 addFilter(attribute)
}

function ColumnsProvider() {
 const [columns, setColumnsInner] = useState(initColumns)

So naturally you centralized state update logic and moved the setter closer to the state,

creating some kind of gate where all updates must come through. In ColumnsProvider , you

implemented a setColumns wrapper function.

It works… Oops. Now, when you add a new column, all filters are reset. So you need to

write some merge function which modifies only filters that changed.

It is definitely a better approach, but if you’re like me, you feel it is still fragile in the long

run. After some years and several new colleagues, somebody will create code that calls

setColumnsInner directly without your gate.

I also find it unexpected and confusing that ColumnsProvider depends on FiltersContext . I

would expect it the other way around. But you can decide whether you share this

perspective.

You might also end up with cyclic dependency because, if you remember the initialization

logic above, you know FiltersProvider depends on ColumnsContext . So we need to use

constant for initializing filters instead, which creates a need to keep the initial value in sync

too.

+ Better maintainability

- Need for merging function

- Reverted dependency

- Cyclic dependency

 const { setFilters } = useContext(FiltersContext)
 const setColumns = (columns) => {
 setColumnsInner(columns)
 setFilters(columns)
 }
 // use setColumns instead of setColumnsInner
 ...
}

const setColumns = (columns) => {
 setColumnsInner(columns)
 setFilters(prevFilters =>
 mergeFilters(prevFilters, columns)
);
}

Is there a better option?

3. Effect Approach

Date # Customer Amount

Number of requests: 0

You may think of useEffect . It can react to any change to columns state. Oops. Again, we

need to use the mergeFilters function to avoid resetting all filters.

But there is a bigger problem. useEffect is not synchronous, and it does not run in the

same render cycle. So when you add a new column, the filters are not updated

immediately. There is a brief timeframe where your filters are not in sync with columns.

It can be a source of bugs and glitches. The UI jumps back and forth. It is visually

disturbing and can break animations.

But more importantly, it causes a double refetch, leading to performance issues,

unnecessary server load, and increased costs. You can see it by yourself in the interactive

example above. Try to change visible columns and watch fired requests counter.

+ Good maintainability

Date # Customer Amount

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

⚙

const [columns] = useContext(ColumnsCtx)
const [setFilters] = useContext(FiltersCtx)
useEffect(() => {
 setFilters(prevFilters =>
 mergeFilters(prevFilters, columns)
);
});

+ No weird dependencies

- Asynchronous update

- UI glitches

- Doubled fetching

- Need for merging function

Do not use useEffect for synchronizing states.

4. Selector Approach

Date # Customer Amount

Number of requests: 0

Date # Customer Amount

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

⚙

function useFilters() {
 const [attributes] = useContext(AttributesCtx)
 const [filters] = useContext(FiltersCtx)
 return attributes.map((attribute) => {
 const filter = filters[attribute]
 return { attribute, ...filter }
 })
}

type Filters = {
 [attribute: string]: {
 operator?: '='|'>'|'<',
 value?: string|number
 }
}

What you encountered is a problem with state synchronization caused by duplicate state.

Filters and columns are different entities, but part of their state is duplicated and can be

shared. It’s about visible attributes. So we extract the visible attributes from both states

and derive visible columns and filters from them. Let’s step into a time machine and go

back to 2027, where we were shaping filters state.

We want to change the semantics of the filters state. It will not hold which filters are visible

but just which attributes are filtered. We adjust the shape of the filters and make it a

dictionary. The useFilters hook will merge two states: visible attributes and modified

filters. The benefit is that we do not have to initialize the state at all. Since columns don’t

contain any additional state beyond attributes, we can use attributes directly in the same

manner as columns before (this is not always the case, but let’s keep this example simple).

This way, filters will always be the same as columns. Even if the filters state is empty,

there is no need for initialization. The change is synchronous. No glitches. No useless

refetches. Columns are independent of Filters. The column state can be updated in any

way, and the reactivity system will take care of rerunning this derivation logic.

You might argue someone can forget to use this hook and access the filters state directly.

You are right. So what’s the advantage compared to the setColumns wrapper function? But

IMO, it’s less likely to happen since forgetting the hook would immediately result in an

empty state.

Also, this derivation logic (selector) is easier to maintain than a setter (action) because it is

reactive. We just focus on control logic, not when it should be called. The reactive system

takes care of it.

It is fair to say that there is a hidden user experience difference. When the attribute is

filtered, then removed and added again, it holds the previous filter values. Therefore,

orders are filtered after the column is added back. You can try it by yourself in the

interactive example above.

Sometimes this behavior is even desired, but in this situation it is unintuitive, and I see it

as a disadvantage here. It is fixable by combining this selector approach with the

previously mentioned gate setter approach. Simply clear the selected filter whenever a

column is removed. However, I’ll keep this article short and won’t go into further detail

here. I see this as an edge-case, and I believe mentioned benefits outweigh this

disadvantage. But feel free to make your own opinion here.

+ Good maintainability

+ No weird dependencies

+ Synchronous update

+ No UI glitches

+ Single fetch

- Overly persistent state

Conclusion

In 2027, we made a quite dangerous assumption: that columns and filters must be in sync.

It is an invariant of your state shape, which TypeScript is not able to check. Therefore, you

need to handle it manually. This was just one example inspired by a real-world problem.

But I frequently see developers using effects and setters to synchronize states. Selectors

generally provide more maintainable solutions, are synchronous, and ensure immediate,

predictable updates.

IMO, these state invariants represent a bad code smell. They frequently cause bugs,

glitches, and performance issues. Try to develop a nose for these invariants and pay

attention when someone introduces one into your app.

I know the world out there is wild. Perhaps your junior colleague has already created a

shape like this, and it’s deeply baked into your app, leaving no time to refactor the entire

codebase. In such a case, I would recommend going with the gate setter solution.

Definitely avoid useEffect if possible. Additionally, consider implementing a function that

checks invariants that must always hold true for your state. You can run this function within

your derivation logic (selectors) to alert you immediately if an invariant breaks.

I hope I’ve given you some material to think about. As always, if you disagree with me, I

encourage you to get in touch. In any case…

Thanks for reading.

Discuss on Discuss on Discuss on

https://x.com/ondrejvelisek/status/1911856456489681207
https://bsky.app/profile/ondrejvelisek.bsky.social/post/3lmsaw4qky22u
https://www.linkedin.com/posts/ondrej-velisek_avoid-the-state-synchronization-trap-ondrej-activity-7317623391673307137-Pl4z/

