
Get the hell out of the LLM as soon
as possible
April 1, 2025

Donʼt let an LLM make decisions or execute business logic: they suck at that. I build

NPCs for an online game, and I get asked a lot “How did you get ChatGPT to do that?”

The answer is invariably: “I didnʼt, and also you shouldnʼt”.

In most applications, the LLM should be the user-interface only between the user and

an API into your application logic. The LLM shouldnʼt be executing any logic. Get the

hell out of the LLM as soon as possible, and stay out as long as you can.

Y Tho?

Home Series Latest About

https://sgnt.ai/
https://sgnt.ai/s
https://sgnt.ai/p
https://sgnt.ai/about


This is best illustrated by a contrived example: you want to write a chess-playing bot

you access over WhatsApp. The user sends a description of what they want to do

(“use my bishop to take the knight”), and the bot plays against them.

Could you get the LLM to be in charge of maintaining the state of the chess board and

playing convincingly? Possibly, maybe. Would you? Hell no, for some intuitive reasons:

Performance: Itʼs impressive that LLMs might be able to play chess at all, but they

suck at it (as of 2025-04-01). A specialized chess engine is always going to be a

faster, better, cheaper chess player. Even modern chess engines like Stockfish

that incorporate neural networks are still purpose-built specialized systems with

well-defined inputs and evaluation functions - not general-purpose language

models trying to maintain game state through text.

Debugging and adjusting: Itʼs impossible to reason about and debug why the LLM

made a given decision, which means itʼs very hard to change how it makes those

decisions if you need to tweak them. You donʼt understand the journey it took

through the high-dimensional semantic space to get to your answer, and itʼs really

poor at explaining it too. Even purpose-built neural networks like those in chess

engines can be challenging for observability, and a general LLM is a nightmare,

despite Anthropicʼs great strides in this area

And the rest…: testing LLM outputs is much harder than unit-testing known code-

paths; LLMs are much worse at math than your CPU; LLMs are insufficiently good

at picking random numbers; version-control and auditing becomes much harder;

monitoring and observability gets painful; state management through natural

language is fragile; youʼre at the mercy of API rate limits and costs; and security

boundaries become fuzzy when everything flows through prompts.

Examples

The chess example illustrates the fundamental problem with using LLMs for core

application logic, but this principle extends far beyond games. In any domain where

https://dynomight.net/chess/
https://www.anthropic.com/research/tracing-thoughts-language-model


precision, reliability, and efficiency matter, you should follow the same approach:

1. The user says they want to attack player X with their vorpal sword? The LLM

shouldnʼt be the system figuring out is the user has a vorpal sword, or what the

results of that would be: the LLM is responsible for translating the free-text the

user gave you into an API call only and translating the result into text for the user

2. Youʼre building a negotiation agent that should respond to user offers? The LLM

isnʼt in charge of the negotiation, just in charge of packaging it up, passing it off to

the negotiating engine, and telling the user about the result

3. You need to make a random choice about how to respond to the user? The LLM

doesnʼt get to choose

Reminder of what LLMs are good at

While Iʼve focused on what LLMs shouldnʼt do, itʼs equally important to understand

their strengths so you can leverage them appropriately:

LLMs excel at transformation and at categorization, and have a pretty good grounding

in “how the world works”, and this is where you in your process you should be

deploying them.

The LLM is good at taking “hit the orc with my sword” and turning it into

`attack(target="orc", weapon="sword")`. Or taking `{"error":

"insufficient_funds"}` and turning it into “You donʼt have enough gold for that.”

The LLM is good at figuring out what the hell the user is trying to do and routing it to

the right part of your system. Is this a combat command? An inventory check? A

request for help?

Finally, the LLM is good at knowing about human concepts, and knowing that a “blade”

is probably a sword and “smash” probably means attack.



Notice that all these strengths involve transformation, interpretation, or communication

—not complex decision-making or maintaining critical application state. By restricting

LLMs to these roles, you get their benefits without the pitfalls described earlier.

The future

What LLMs can and canʼt do is ever-shifting and reminds me of the “God of the gaps”.

a term from theology where each mysterious phenomenon was once explained by

divine intervention—until science filled that gap. Likewise, people constantly identify

new “human-only” tasks to claim that LLMs arenʼt truly intelligent or capable. Then, just

a few months later, a new model emerges that handles those tasks just fine, forcing

everyone to move the goalposts again, examples passim. Itʼs a constantly evolving

target, and what seems out of reach today may be solved sooner than we expect.

And so like in our chess example, we will probably soon end up with LLMs that can

handle all of our above examples reasonably well. I suspect however that most of the

drawbacks wonʼt go away: your non-LLM logic that you pass off to is going to be easier

to reason about, easier to maintain, cheaper to run, and more easily version-controlled.

Even as LLMs continue to improve, the fundamental architectural principle remains:

use LLMs for what theyʼre best at—the interface layer—and rely on purpose-built

systems for your core logic.

Share

Read Next

Four bad definitions of "Agentic AI"
March 30, 2025

https://en.wikipedia.org/wiki/God_of_the_gaps
https://sgnt.ai/p/agentic-ai-bad-definitions/


If your team promises to deliver (or buy!) 'Agentic AI', then everyone needs to have a shared

understanding of what that means; you don't want to be the one left trying to explain the

mismatch to stakeholders six months later. There's no current (2025-03-30) widely accepted

definition, so if you're using the term, be clear on what you mean, and if someone else is using

the term, it's worth figuring out which one they mean.

Get these articles sent to you
If you liked it, you might like other stuff I write

Your email Subscribe

About Contact

© 2025 sgnt.ai. All rights reserved. LinkedIn Bluesky

https://sgnt.ai/p/agentic-ai-bad-definitions/
https://sgnt.ai/about
https://sgnt.ai/contact
https://sgnt.ai/
https://www.linkedin.com/in/petersergeant/
https://bsky.app/profile/sgnt.ai
https://clicky.com/101481533

