
P

MARCH 25TH, 2025

icking the technology stack for a project is an important and

consequential decision. In the enterprise space in particular, it
often involves a multi-year commitment with long-lasting

implications on the roadmap of the project, the pace of its development,

the quality of the deliverables, and even the ability to assemble and
maintain a happy team.

The open-source software model is a fundamental answer to this. By
using software that is developed in the open, anyone is free to extend it
or modify it in whatever way fits their use case. More crucially, the

portability of open-source software gives developers and organisations

YOU SHOULD KN
BEFORE CHOOSING

BUILD TIMES

A WEB DEVELOPMENT PERIODICAL BY EDUARDO BOUÇAS

https://eduardoboucas.com/
https://eduardoboucas.com/
https://eduardoboucas.com/
https://eduardoboucas.com/
https://eduardoboucas.com/
https://eduardoboucas.com/
https://eduardoboucas.com/
https://eduardoboucas.com/
https://eduardoboucas.com/about

the freedom to move their infrastructure between different providers
without fear of getting locked in to a specific vendor.

This is the expectation with Next.js, an open-source web development
framework created and , a cloud provider that offers

managed hosting of Next.js as a service.

There is nothing wrong with a company profiting from an open-source
software it created, especially when that helps fund the development of

the project. In fact, there are plenty of examples of that model working
successfully in our industry.

But I think that can only work sustainably if the boundaries between the
company and the open-source project are abundantly clear, with well-
defined expectations between the maintainers, the hosting providers and

the users about how and where each feature of the framework can be
used.

I want to explain why I don't think this transparency exists today.

My goal is not to stop anyone from using Next.js, but to lay out as much
information as possible so developers and businesses can make an

informed decision about their technology stack.

Let me lead with a declaration of interest:

I work at and have done so for over four years

governed by Vercel

Declaration of interest

Netlify

https://nextjs.org/governance
https://www.netlify.com/

Netlify is a frontend cloud platform that supports Next.js and other
web frameworks as part of its product offering

Netlify and Vercel are direct competitors

It's important for me to establish this for a few reasons.

My job involves building the infrastructure and tooling needed to
support the full feature set of Next.js on Netlify, which has exposed me
to the internals of the framework in a way that most people won't see.

Over the years, I have seen concerning patterns of tight coupling
between the open-source framework and the infrastructure of the

company that builds it.

My employment is also the reason why I have always been very wary of
voicing these concerns in public. As a Netlify employee, I don't really

get to voice an objective concern about Next.js without people
dismissing my claims as Netlify unleashing one of its minions to spread

 about a competitor.

I'm not keen on exposing myself and the company to that type of debate,
so I have always chosen to work behind the scenes in supporting the

developers who decide to deploy their sites on Netlify and shield them
from all the complexity that goes into making that possible.

But then something happened.

Last weekend, Vercel disclosed a critical security vulnerability with
Next.js. This type of issue is normal, but the way Vercel chose to handle

FUD

https://en.wikipedia.org/wiki/Fear,_uncertainty,_and_doubt

it was so poor, reckless and disrespectful to the community that it has
exacerbated my concerns about the governance of the project.

For me, things change once your decisions put other people at risk, so I
felt the urge to speak up.

I'll come back to this incident later, but before that I want to back up a
little and give you a peek behind the curtain. My history of reservations
about the openness and governance of Next.js stem from a series of

decisions made by Vercel over the years that make it incredibly
challenging for other providers to support the full feature set of the

framework.

I'll cover these by laying out a series of facts about how Next.js is built.
I'll then add some of my own considerations about how those facts live

up to the expectations of an open, interoperable, enterprise-grade
software product.

Most modern web development frameworks use the concept of adapters
to configure the output of the framework to a specific deployment target:

, , , and are just a few examples. This
pattern allows developers to keep the core of their applications
untouched, and simply swap the adapter if they decide to start deploying

to a different provider.

Openness and governance

Fact #1: No adapters

Remix Astro Nuxt SvelteKit Gatsby

https://remix.run/docs/en/main/discussion/runtimes
https://docs.astro.build/en/reference/adapter-reference/
https://nitro.build/deploy/custom-presets
https://kit.svelte.dev/docs/adapters
https://www.gatsbyjs.com/docs/how-to/previews-deploys-hosting/adapters/

These adapters can be maintained by framework authors, by the hosting
providers, by the community, or all of the above. Frameworks are

typically structured in such a way that it’s possible for anyone to build
their own adapter in case one isn’t available for the provider of their

choice.

Next.js does not have the concept of adapters and they have
 that they would not support them. The output of a Next.js build has

a proprietary and undocumented format that is used in Vercel
deployments to provision the infrastructure needed to power the

application.

Vercel's alternative to this was the Build Output API, a documented
specification for the output format of frameworks who wish to deploy to

Vercel.

This is not an adapter interface for Next.js, and in fact has nothing to do
with Next.js. The said that Next.js supports this

format, but as of today that isn’t true.

In November 2023, the to say

that Next.js would adopt the Build Output API in the following major
version of the framework (which would be version 15):

stated in the
past

announcement blog post

Next.js documentation has been updated

Next.js produces a standard deployment output used by

managed and self-hosted Next.js. This ensures all features are
supported across both methods of deployment. In the next major

“

https://archive.leerob.io/blog/using-nextjs#open-source-and-framework-boundaries
https://archive.leerob.io/blog/using-nextjs#open-source-and-framework-boundaries
https://vercel.com/blog/build-output-api
https://github.com/vercel/next.js/commit/958dcbc7e35dac5b84dd5a3bd3f4bb7f5ba0bf1a

Next.js 15.0.0 was without support for the
Build Output API.

Vercel have built the Build Output API because they wanted their
customers to leverage the rich ecosystem of frameworks in the space,
but their own framework doesn't support it to this day.

This means that any hosting providers other than Vercel must build on
top of undocumented APIs that can introduce unannounced breaking

changes in minor or patch releases. (And they have.)

Late last year, and have joined , a
movement of different cloud providers that collaborate on open-source

adapters for Next.js. Shortly after, Vercel have engaged with the
movement and committed to building support for adapters. They haven't
made any timeline commitments, but have

.

It's important to remember that it's been almost three years since the

launch of the Build Output API, and to this day the framework still isn't
portable. I'm cautiously optimistic about that actually changing this
time.

version, we will be transforming this output into our
.

Build
Output API specification

released in October 2024

Cloudflare Netlify OpenNext

recently said they are

actively working on it

Fact #2: No official serverless support

https://vercel.com/docs/build-output-api/v3?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/docs/build-output-api/v3?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://nextjs.org/blog/next-15
https://blog.cloudflare.com/builder-day-2024-announcements/#cloudflare-joins-opennext
https://www.netlify.com/blog/netlify-joins-opennext/
https://opennext.js.org/
https://x.com/feedthejim/status/1903837444648382758?s=46
https://x.com/feedthejim/status/1903837444648382758?s=46

The official methods for require running the
application in a stateful way, as long-running servers. While technically

possible, this is very hard to operate in any real-world production
environment where a single instance isn’t sufficient.

The setup needs to be able to dynamically scale up very quickly in order
to handle sudden bursts of traffic, while at the same time being able to
scale down to zero in order to be cost-effective. This last part is essential

when working with , for example, where the deep
tangling between client and server code unless

every version of the server code ever deployed is available indefinitely.

One obvious answer to these requirements is serverless computing, as
attested by official Next.js documentation that

:

This clearly advantageous computing paradigm is precisely how Vercel

has run Next.js sites in their own infrastructure for years. Given that
Next.js is an open framework, it is reasonable to expect that you'd be
able to use that same model in any serverless provider of your choice.

But it's not that simple.

self-hosting Next.js

server components
can break older clients

confirms the benefits of

this model

Serverless allows for distributed points of failure, infinite
scalability, and is incredibly affordable with a "pay for what you

use" model.

“

https://nextjs.org/docs/pages/building-your-application/deploying#self-hosting
https://nextjs.org/docs/app/building-your-application/rendering/server-components
https://x.com/youyuxi/status/1804331313421521101
https://nextjs.org/blog/next-8#serverless-nextjs
https://nextjs.org/blog/next-8#serverless-nextjs

Next.js once had that you could enable with a
configuration property, but it was

. No equivalent mode was ever introduced.

The official React documentation, which ,

says that Next.js can be , but there
is no official documentation whatsoever for this.

This means that any providers who want to offer support for Next.js

with the same computing model that the framework itself promotes must
reverse-engineer their way to a custom implementation.

Next.js has that are only ever executed for sites deployed to
Vercel. An example of this is a private flag called , which

allows Vercel to shift work away from the framework and run it on their
edge infrastructure.

Here's an example of why that matters. ,

a way to address use cases such as feature flags, A/B tests and advanced
routing. What's common in all of these use cases is the need to run logic

on the hot path, behind the cache, with very low latency.

The announcement included this:

a serverless mode
removed without further explanation

in October 2022

the Next.js team help maintain

deployed to «any serverless hosting»

Fact #3: Vercel-specific code paths

code paths
minimal mode

Next 12 introduced middleware

https://nextjs.org/blog/next-8#serverless-nextjs
https://github.com/vercel/next.js/pull/41495
https://github.com/vercel/next.js/pull/41495
https://github.com/vercel/next.js/pull/41495
https://react.dev/learn/creating-a-react-app#nextjs-app-router
https://github.com/search?q=repo%3Avercel%2Fnext.js+NEXT_MINIMAL+path%3A%2F%5Epackages%5C%2Fnext%5C%2F%2F&type=code
https://github.com/vercel/next.js/discussions/29801
https://nextjs.org/blog/next-12#introducing-middleware

In practice, this means that you have two options: use next start and
run middleware alongside the rest of your application in your origin

server (which is typically running in a single region, after the cache), or
use one of the «Edge platforms like Vercel» to run middleware at the
edge, before the cache, unlocking all the incredible use cases that

.

The phrase «Edge platforms like Vercel» surely means that there are

many alternatives out there because other providers were given the
option to also implement middleware at the edge, right? No.

This secret minimal mode is what allowed Vercel to break out

middleware from the rest of the application so they could run it at the
edge, but only Vercel has access to it.

Netlify does support running middleware at the edge, but we've done it

at the expense of having a full team of engineers dedicated to reverse-
engineering the framework and building our own edge middleware

implementation on top of undocumented APIs. This type of commitment
is just impossible for smaller companies that simply do not have the
resources to fight this battle, which makes most of them .

This works out of the box using next start , as well as on
Edge platforms like Vercel, which use Edge Middleware.“

Vercel

boasted in the resources linked in the announcement

stop trying

https://vercel.com/resources/edge-middleware-experiments-personalization-performance
https://vercel.com/resources/edge-middleware-experiments-personalization-performance
https://www.stormkit.io/blog/why-we-are-dropping-support-for-next-js

As far as I know, Netlify is the only cloud provider to support the full
feature set of Next.js outside of Vercel, which doesn't make sense to me.

With Next.js having such a sizeable share of the market, I would expect
a lot more hosting options, which would foster competition and

innovation across the board, ultimately benefitting users and the web.

So why is there a hidden door in Next.js for which only Vercel holds the
key? I think it's expected that the framework maintainers regularly

experiment with features before they're launched, but minimal mode
isn't that. We're talking about an entirely different operation mode for

the framework, which has been in the code base for many years and
which unlocks capabilities that are reserved for the for-profit company
that owns the framework.

If WordPress had a privileged code path that was only accessible to sites
deployed to Automattic properties, would it be trusted as a truly open
project and would it have the dominance it has today?

Let's go back to the security incident. On Friday, March 21st at 10:17
AM (UTC), Vercel published ,

ranked with a severity of 9.1 out of 10.

In essence, it was possible for anyone to completely bypass Next.js
middleware by sending a specific header in the request. This is

important because

Security posture

a CVE for a critical security incident

authentication was one of the flagship use cases of

https://github.com/advisories/GHSA-f82v-jwr5-mffw
https://nextjs.org/blog/next-12#introducing-middleware

, and this exploit meant that anyone could bypass the
authentication layer and gain access to protected resources.

As the incident unravelled, a few things became apparent. First of all,
the vulnerability was , but

it wasn't until March 14th that the team started looking into it. Once they
did, they started pushing fixes for and within a couple
of hours.

So by March 14th (at the latest), Vercel knew they had a serious incident
on their hands. The responsible thing to do at that point would be to

immediately disclose the vulnerability to other providers, so that they
could assess the impact to their own customers and take any necessary
actions to protect them as quickly as possible. At times like these, our

duty to protect users should rise above any competition between
companies.

That is not what happened. It took Vercel 8 (eight) days to reach out to

Netlify. In that time, they managed to push patches to Next.js, cut two
releases, and even write a blog post that framed the incident as

something that Vercel's firewall had «proactively protected» their
customers from (even though that their firewall had
nothing to do with it).

I think it's incredibly disingenuous to spin a critical security
vulnerability in your open-source project as a strength of your product,

with absolutely no consideration for whether users in other providers
were also affected and what they should do to mitigate. In fact, they

middleware

reported to the Next.js team on February 27th

Next 14 Next 15

their CTO later said

https://nextjs.org/blog/next-12#introducing-middleware
https://nextjs.org/blog/next-12#introducing-middleware
https://nextjs.org/blog/next-12#introducing-middleware
https://nextjs.org/blog/cve-2025-29927#timeline
https://github.com/vercel/next.js/commit/5fd3ae8f8542677c6294f32d18022731eab6fe48
https://github.com/vercel/next.js/commit/52a078da3884efe6501613c7834a3d02a91676d2
https://x.com/cramforce/status/1903648110863343871?s=46

wouldn't even know this, because they hadn't even reached out to us at
this point.

After , Vercel have rewritten the blog
post to remove any mention of their firewall and clarify which providers

had been affected and whether their customers had to take any action.

Vercel has then where they said — for the first
time — that on March 21st they were able to «verify Netlify and

Cloudflare Workers were not impacted». This is directly contradicted by
their staff offering help to «get a

patch up». If we were not impacted, what was there to patch?

This lack of consideration for any users outside of Vercel has created
unnecessary anxiety and confusion for a lot of people, leaving some

providers scrambling to and then having to
, others when in reality

, etc.

As you read this, it's impossible for anyone to know how many sites out
there are still vulnerable to this exploit, many of which would've been

safe if things were handled differently.

And at the height of all this mess, Vercel's leadership had...
.

being called out on social media

released a postmortem

reaching out to Netlify on March 22nd

find a solution partially roll
it back announcing that they were not vulnerable
they were

a different
focus

But Vercel owns Next.js

https://bsky.app/profile/eduardoboucas.com/post/3lky5uuo5os2o
https://vercel.com/blog/postmortem-on-next-js-middleware-bypass#2025-03-21
https://x.com/eduardoboucas/status/1904672921206865935
https://x.com/elithrar/status/1903411980070797691
https://x.com/elithrar/status/1903526240847331362
https://x.com/elithrar/status/1903526240847331362
https://x.com/ClerkDev/status/1903497002828120426
https://x.com/n2d4wastaken/status/1903748178874360024?s=46
https://x.com/rauchg/status/1903528305002762387
https://x.com/rauchg/status/1903528305002762387

They do. And they have every right to make a business out of the
framework that they've put so much work, talent, time and energy into

building and growing. I'm not disputing that.

But that growth holds them to a high bar of standards that, in my

opinion, they have repeatedly failed to meet.

«If Vercel own Next.js, what incentive do they have to open it up to other
providers?» is and which I find intriguing.

What incentives does Redis have for opening up their software when
they own Redis Cloud? Why make Grafana open when Grafana Cloud is

owned by the same company? Or WordPress, ClickHouse and many
others?

The incentive is that they have to do those things if they choose to

publish their software as open-source and not as a closed, proprietary
solution. Their success is intrinsically associated their users having the
guarantee that they are free to choose whatever provider offers the

service that meets their needs at any given time.

It's not my business to say which framework you should use. If you like

Next.js and you still think it's the best tool for the problem you need to
solve, you should absolutely use it. But I hope that this information
helps you feel more confident about your decision, whichever way

you're leaning.

a question I sometimes see

Wrapping up

https://x.com/jamonholmgren/status/1904174718779072575

Copyright © 2025

As for me, I'll keep doing my job to help support the developers who
chose to deploy their sites to Netlify, whatever their framework of

choice is. And competition aside, I'm genuinely looking forward to help
Vercel make Next.js more open and interoperable through the OpenNext

movement. ∎

This is a placeholder where I will share any response I receive from

Vercel to this post. I have received none. If you would like to see these
issues clarified, please consider soliciting a response from Vercel by

.

Update (March 26th): Added about Vercel's most recent
postmortem and .

Vercel's response

sharing this post on social media

a note
a section for Vercel's response

Eduardo Bouças

https://x.com/eduardoboucas/status/1904606543376462052
https://eduardoboucas.com/about
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/
https://eduardoboucas.com/posts/2022-11-07-publishing-deno-modules/

