
The 2FA app that tells you when you get
`314159`

An indie project for early 2010s internet addicts

FEB 19, 2024

3 1 Share

This was a pretty fun project: not only did I manage to tickle the part of my geek brain

which loves spotting patterns; I got to handle some nifty processing, threading, and

optimisation problems!

Subscribe to Jacob’s Tech Tavern for free to get ludicrously in-depth articles on iOS, Swift,

tech, & indie projects in your inbox every weeks.

Paid subscribers unlock Quick Hacks, my advanced tips series, and get access to my long-

form articles 3 weeks before anyone else.

To celebrate Pi day, this weekend only I’m offering a 31.4159% discount —upgrade today

to lock in the price forever!

Like all recovered edgelords who came of age in the early 2010s, I somewhat miss the

heyday of image-boards like 4chan. They were the final bastion of the wild-west early

internet before the nazis ruined everything.

One of the classic memes was GET, where you’d take intense pride in correctly

anticipating your randomly-generated post ID containing an interesting sequence of

numbers.

JACOB BARTLETT

13

Type your email... Subscribe

https://blog.jacobstechtavern.com/p/building-a-2fa-app-that-detects-patterns/comments
javascript:void(0)
https://knowyourmeme.com/memes/get
https://substack.com/@jacobbartlett
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F21975386-10b4-490d-a72d-778dcb7e37da_800x450.jpeg

Check ‘em

These days, now that all the normies have grown up and found jobs, the closest we get

to the magic of yesteryear is multi-factor authentication codes.

If you know, you know.

The drudgery of having to re-authenticate with your bank, your email, or your cloud

services. The little glimmer of joy when you get a really nice number like 787000 or

123450.

Inspiration hit.

These MFA codes use a common algorithm which refreshes every 30 seconds. We’re

only exposed to a tiny sliver of the dubs, trips, quads, quints, and sextuples possible in

our 6-digit authentication codes.

As with all my indie projects, I had a singular clear vision around which I can build:

What if your 2FA app told you every time a cool number came up?

I knew what I had to do.

If you love apps but hate reading, skip ahead to download Check ’em: The Based 2FA

App today!

Already have an account? Sign in

Discover more from Jacob’s Tech Taver

Dad building iOS apps in London startups. Every

week, I'll send you ludicrously in-depth, sometim

funny, articles about iOS, Swift, tech, & indie…

Over 4,000 subscribers

Enter your email...

Subscribe

By subscribing, I agree to Substack's Terms of Use, and

acknowledge its Information Collection Notice and Privac

Policy.

https://knowyourmeme.com/memes/dubs-guy-check-em
https://www.wired.co.uk/article/moot-joins-google
https://jacobbartlett.substack.com/p/my-toddler-loves-planes-so-i-built
https://apps.apple.com/app/check-em-the-based-2fa-app/id6477842236
https://apps.apple.com/app/check-em-the-based-2fa-app/id6477842236
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F21975386-10b4-490d-a72d-778dcb7e37da_800x450.jpeg
https://substack.com/tos
https://substack.com/ccpa#personal-data-collected
https://substack.com/privacy
https://substack.com/privacy

I don’t need many moving parts to find out whether this works.

Enter 2FA secret keys.

Generate 6-digit 2FA codes locally.

Send push notifications when quads/quints/sexts are generated.

If the concept — getting notifications when cool 2FA numbers appear — holds up, then

I could turn this into a real app with a few key features:

The Proof of Concept

The Minimum Viable Product

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F1266491b-68fe-4544-a449-aaf991cbc50d_1246x1202.png

Capture 2FA secrets with the camera.

Store multiple 2FA codes

Implement more numerical patterns.

Let users choose which patterns they want to know about.

I knew I was onto something: 90% of the people I explained this to thought I was a

moron. The other 10% saw only sheer brilliance.

That’s me: moron to some; genius to others.

TOTP, or time-based one-time password, is a surprisingly simple concept. It’s an

authentication process which uses two inputs:

A secret key, stored on both the authentication service and your own device.

The current time, or, more specifically, the number of 30-second intervals which

have elapsed since unix time.

Building the Proof of Concept

TOTP

https://www.protectimus.com/blog/totp-algorithm-explained/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fab654af0-df86-4cd6-adb5-d629dfaa39c1_800x533.jpeg

An algorithm deterministically hashes these two inputs to create the 6-digit codes you

know and love. This hashing algorithm is pretty cookie-cutter, found in Apple’s

CryptoKit. Thanks to our friends at the Apple forums, here’s the full TOTP algorithm

in all its glory:

To make sure this worked right; I set up 2FA on my Google account, and displayed the

secret in my app using the algorithm.

// CodeGenerator.swift

private let secret = Data(base64Encoded: "AAAAAAAAAAAAAAAAAAAAAAAAAAA")!

func otpCode(date: Date = Date()) -> String {

 let digits = 6

 let period = TimeInterval(30)

 let counter = UInt64(date.timeIntervalSince1970 / period)

 let counterBytes = (0..<8).reversed().map { UInt8(counter >> (8 *

$0) & 0xff) }

 let hash = HMAC<Insecure.SHA1>.authenticationCode(for: counterBytes,

using: SymmetricKey(data: secret))

 let offset = Int(hash.suffix(1)[0] & 0x0f)

 let hash32 = hash

 .dropFirst(offset)

 .prefix(4)

 .reduce(0, { ($0 << 8) | UInt32($1) })

 let hash31 = hash32 & 0x7FFF_FFFF

 let pad = String(repeating: "0", count: digits)

 return String((pad + String(hash31)).suffix(digits))

}

https://forums.developer.apple.com/forums/thread/120918
https://myaccount.google.com/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F57e8afda-51bd-4604-8126-2da40855bca1_800x369.png

Coincidentally, I got a damn good code with which to confirm my 2fa setup

And, like magic (after some annoying base32 to base64 conversion), Google accepted

my 2FA!

Confirming the 2fa code

Now that we’ve got the bare bones of our 2FA working, we can implement the final

piece of the proof of concept puzzle: generating notifications.

App Limitations

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F57e8afda-51bd-4604-8126-2da40855bca1_800x369.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F2ebc37bb-e254-493b-87c0-f55afaeb9a80_800x471.png

Our key limitation lies in our mobile device.

We can’t actually keep a background process such as 2FA generation running forever,

and certainly can’t store user secrets on a backend push server.

Therefore, to make this concept work, we have to be a sneaky: precompute 2FA codes

into the future, and schedule delivery for the time at which they appear in real life.

Additionally, we can only schedule 64 pushes on iOS at any time, so we should:

1. Save a notification or two asking users to re-enter the app.

2. Incentivise users to open the app via tapping the notifications, toggling a re-

computation of the 2FA codes.

Now we know how our POC will work, let’s get building.

Let’s jazz up our lowly 2FA code.

We plan to pre-compute many codes, then implement some kind of regex to detect

whether each code is a GET — worthy of checking ‘em.

My super-simple SwiftUI view can display these codes handily, using a

UICollectionView-backed List to ensure decent performance (the vanilla

VStack in a ScrollView would begin creaking far before 10,000 items!).

Finding our First GETs

// ContentView.swift

struct ContentView: View {

 var body: some View {

 List {

 ForEach(makeOTPs(), id: \.self) {

 Text($0)

 .fontDesign(.monospaced)

 .font(.title)

 .kerning(4)

 }

 .frame(maxWidth: .infinity)

 }

 }

Looking good so far.

Initial list of 2FA codes

Now, we can add a simple regex-based evaluator to check for trips — that is, a TOTP

containing a sequence of three matching digits such as 120333.

We add a fontWeight modifier to our Text views to easily detect these GETs when

we’re scrolling.

 func makeOTPs() -> [String] {

 (0..<10_000).map {

 otpCode(increment: $0)

 }

 }

}

extension String {

 func checkThoseTrips() -> Bool {

 (try? /(\d)\1\1/.firstMatch(in: self)) != nil

 }

}

Text($0)

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F1c407e00-9c3f-44a8-93a9-f42e8e6429ab_800x369.png

Et viola! Check those trips!

Check those trips!

We can even make a basic modification to the our regex to detect the hallowed quads

— I’ll leave this as an exercise to the reader.

Check those quads!

Our careless ForEach implementation causes a warning:

 .fontWeight($0.checkThoseTrips() ? .heavy : .light)

A Pointless but Interesting Observation

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fad021e82-eb73-4f99-9324-abf5481f25c1_800x369.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F0be719c7-c55c-483d-a5a5-365fee6a0f1f_800x369.png

We actually get dozens of this warning!

Using the code string as a view identity is a bad idea here

Since we generated 10,000 OTPs, it’s extremely likely that several match — this is the

same as the birthday problem, where the number of pairs of possible matches is well

over a million.

Let’s start calculating some interesting codes.

The key here is precomputing to look ahead into the future: TOTP is a deterministic

hash of the secret and date inputs. Therefore, we can feed a long sequence of dates in

the future to determine which OTP code you see at what time.

Let’s adjust to our OTP generation to return both the code and date:

ForEach<Array<String>, String, Text>: the ID 312678 occurs multiple

times within the collection, this will give undefined results!

Producing Rare GETs

// TOTP.swift

struct OTP {

 let date: Date

 let code: String

}

func otpCode(date: Date = Date(), increment: Int = 0) -> OTP {

https://en.wikipedia.org/wiki/Birthday_problem
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F3d2f26e1-dad4-4ba2-8877-18c41b87be6c_800x311.png

To test this, let’s generate a ton of these codes, and search for the full-house of GETs:

quints.

After some number crunching while my M1 runs the hashing function — about 30

seconds of it — we arrive at some seriously checkable GETs.

 let digits = 6

 let period = TimeInterval(30)

 let adjustedDate = date.addingTimeInterval(period *

Double(increment))

 let counter = UInt64(adjustedDate.timeIntervalSince1970 / period)

 let counterBytes = (0..<8).reversed().map { UInt8(counter >> (8 *

$0) & 0xff) }

 let hash = HMAC<Insecure.SHA1>.authenticationCode(for: counterBytes,

using: SymmetricKey(data: secret))

 let offset = Int(hash.suffix(1)[0] & 0x0f)

 let hash32 = hash

 .dropFirst(offset)

 .prefix(4)

 .reduce(0, { ($0 << 8) | UInt32($1) })

 let hash31 = hash32 & 0x7FFF_FFFF

 let pad = String(repeating: "0", count: digits)

 let code = String((pad + String(hash31)).suffix(digits))

 return OTP(date: adjustedDate, code: code)

}

func interestingCodes() -> [OTP] {

 (0..<1_000_000)

 .map { otpCode(increment: $0) }

 .filter { $0.code.checkThoseQuints() }

}

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fef200845-f74c-480c-8fe3-1a4ee268a8ce_800x369.png

It’s… it’s beautiful. Check ’em.

Fun as it is to see great numbers, the app concept is no better than a random-number

generating machine if you can’t really use the GETs in real life for your real

authentication.

Now that we know when the interesting numbers are arriving, we want to queue up a

push notification so we catch the number live:

Scheduling our Notifications

// NotificationScheduler.swift

private func createNotification(for otp: OTP) {

 let center = UNUserNotificationCenter.current()

 let content = UNMutableNotificationContent()

 content.title = "Quads GET!!"

 content.body = otp.code

 content.sound = UNNotificationSound.default

 let components = Calendar.current.dateComponents([.year, .month,

.day, .hour, .minute, .second], from: otp.date)

 let trigger = UNCalendarNotificationTrigger(dateMatching:

components, repeats: false)

 let request = UNNotificationRequest(identifier: UUID().uuidString,

content: content, trigger: trigger)

 center.add(request) { (error) in

 // ...

 }

}

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fef200845-f74c-480c-8fe3-1a4ee268a8ce_800x369.png

These are scheduled right after generating the interestingCodes we use in our

view. A short while later, I got 2 wonderful push notifications at once!

I still tell my wife every single time I get a subscriber

This became more exciting when I confirmed this notification corresponded with the

number appearing in reality!

Finding quads in the 2FA app itself

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F1cfa4925-5466-425f-a8e9-57126acb3e28_800x428.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F9d2b95f3-943a-4230-b65c-7b56f6187233_800x376.jpeg

This app has now been elevated beyond a random number generator: this code really

works for signing into my Google account.

To determine different types of interesting number, we need to introduce the concept

of interestingness. This could include, non-exhaustively, a few potential kinds of

number sequence:

Repeated numbers

Consecutive digits

Other mathematically interesting numbers (e.g. pi or e)

Palindromes

These types of interesting number can be enumerated as… well, as an enum case,

optionally created for each OTP we generate.

Interestingness

// Interestingness.swift

enum Interestingness {

 case sexts

 case quints

 case quads

 init?(code: String) {

 if code.checkThoseSexts() {

 self = .sexts

 // ...

 var title: String {

 switch self {

 case .sexts: return "Sextuples GET!!!"

 // ...

 func body(code: String) -> String {

 switch self {

 case .sexts: return "Check those sexts: \(code)"

 // ...

Each checkThose method we use wraps a different regex, and we run them in order

of what we care about most — for instance, sextuples is 100x rarer than quads.

A long-overdue refactor later and we’ve created our proof-of-concept. Let’s recap:

The app allows me to enter a (hardcoded) 2FA secret key.

The app generates a 6-digit 2FA code locally, every 30 seconds.

The app schedules push notifications that show up when quads, quints, and sexts

are generated.

I’m going to take a break to play with the app for a few days. I suspect I might have

the basis for a cool app on my hands.

I’ve been using the app, the bare-bones POC containing the kernel of my idea, for a

few days now. And I LOVE it. I can’t wait until the first time I get sextuples.

Now’s the time to add some meat on the bones and build a fully-fledged 2FA app

around the concept. As I laid out before, this really only requires 4 major new

features:

Scanning 2FA QR codes and store them securely on the keychain.

Displaying and managing multiple 2FA accounts in the UI.

Letting users set the numbers they care about.

Implementing more kinds of interestingness.

Lastly, a non-functional requirement: I’ll need to do some work optimising the very

slow code generation — maybe using batching or local persistence.

I have no intention of doing anything fancy with the design — the standard apple List

view components will take me far, conforming to the HIG out of the box.

Let’s keep our UX nice and simple: I know the functionality primarily lives in the

push notifications; and it’s pretty perfect. That means hiding the QR scanner and

settings behind toolbar buttons that display modal flows.

Building the Minimal Viable Product

Human Interface Guidelines

https://developer.apple.com/design/human-interface-guidelines

The basic List UI for my MVP

A couple of open-source libraries will save me a ton of time on cookie-cutter tasks.

CodeScanner to supply simple SwiftUI QR code scanning, and KeychainAccess to

easily store these 2FA account secrets in the keychain.

This scanner library uses camera access to turn QR codes into easily-parseable URLs

like this:

Scanning 2FA Secrets

otpauth://totp/Google%3Atest%40gmail.com?

https://github.com/twostraws/CodeScanner/
https://github.com/kishikawakatsumi/KeychainAccess
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Feb4c7591-c579-4ba7-a895-e78fe64f3d02_626x510.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F56957bd5-b087-4735-801d-1be734b7b9a6_800x188.png

Now, we can easily get our accounts into the app!

Check ’em: now with a QR scanner!

Using SwiftUI @AppStorage, alongside a List and some Toggles, we can easily

build a user settings screen.

secret=bv7exx7sltbcqffec1qyxscueydwsu5h&issuer=Google

Picking the Numbers You Like

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fa759793f-9f5e-4a52-ac24-2cde5c802ab8_800x647.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F7196bab5-e3a5-4076-a3e0-6d37a1bcc919_636x477.png

Initial settings screen

I used a closure in onDisappear to tell the parent view to begin number crunching

again and re-schedule the notifications. This was the simplest way I to batch

everything up, rather than running expensive computation each time a toggle

changed.

Look, I’m an indie dev, I’m allowed to do this halfway through the build process!

// CodeView.swift

var body: some View {

 // ...

 .sheet(isPresented: $showSettings) {

 SettingsView(onDisappear: {

 viewModel.recomputeNotifications()

 })

 }

}

Belated Customer Research

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F7196bab5-e3a5-4076-a3e0-6d37a1bcc919_636x477.png

I decided to download a few other 2FA apps to see if there were any ideas I could copy.

Frankly, I expected a pretty crowded and competitive app market, but some of these

were truly terrible.

The 2FA app space: mostly astonishingly bad

Seriously, more than 50% of them threw up an extremely aggressive paywall before you

could use them… when there are perfectly good free options.

Does nobody make apps for fun anymore?

Despite this paywall menagerie, I did manage to note down a few good ideas to

borrow.

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F014c8d47-31e1-4f00-b22e-ee40a1ae7944_800x406.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F1439aa34-d6bb-4b90-b9fe-f8ce3fd2bacb_800x901.jpeg

My list of ideas to copy

This is, of course, pretty critical for anyone that has more than one account. More

accounts also means more opportunities for rare GETs!

Updating my keychain code, now we can scan multiple QR codes, persisted our

account data (including the secret), and they worked perfectly for logging me into my

various accounts!

Multiple 2FA Accounts

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F1439aa34-d6bb-4b90-b9fe-f8ce3fd2bacb_800x901.jpeg

I also implemented the proper built-in List functionality, so we can swipe-to-delete

codes we don’t need anymore.

While doing my competitor analysis, I discovered that the Google Authenticator kept

all my 2FA codes from years ago, which I’d added on my previous iPhone!

I realised then I was making two mistakes with my data layer.

Not synching with iCloud

Trying to persist Accounts outside the keychain

Firstly, synchronising our keychain to iCloud means accounts appear on all your other

Apple devices. This is a piece of cake with the Keychain Access library:

// KeychainManager.swift

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F4f565768-9d25-40a3-b3ff-e30eec0652fd_695x573.png

Secondly, I was suffering from shiny-object syndrome: in my haste to use SwiftData as

a persistence layer, I was only using the Keychain for the secrets, and persisting the

rest of the Account metadata through the new framework.

This meant I couldn’t get my accounts on any other device — the secret on its own is

useless!

Therefore, I realised I had to place the whole Account on the keychain.

My new approach keeps the QR code URL on the keychain in its entirety. Now, the

Account object itself is ephemeral; re-computed from the URL every time the app

loads.

This means the Accounts can appear on any iDevice you’re signed in to! This

ephemeral approach neatly kills two birds with one stone. Now we use the Accounts

from the keychain when we need to fetch them at load:

My code is a little bit spaghetti, but the final app was about 1,500 LoC in total — I’ll

rebuild it using a proper DI framework when I want to write an article about DI. If

you’re a junior engineer, please don’t try this at home!

self.keychain = Keychain().synchronizable(true)

// AccountManager.swift

func fetchAccounts() throws -> [Account] {

 try KeychainManager.shared.fetchAll()

 .compactMap { createAccount(from: $0) }

}

private func createAccount(from urlString: String) -> Account? {

 guard let url = URL(string: urlString),

 let account = SecretURLParser.shared.account2FA(from: url)

else {

 return nil

 }

 return account

}

I did a lot of generic coding work to improve the UI and refactor the code nicely, but

there were also a few gems in my development process that were pretty interesting.

This is very much a nice to have, but the best open-source app did the same, so I felt I

had to at least be as good as that.

Fortunately, there is a little-known Google API which crawls the web for FavIcons on

websites and allows you to download them at several resolutions.

How do I work out the website? I found pretty good results by simply using the

issuer property on the QR code and trying the .com.

Here I used the CachedAsyncImage library to get blazingly-fast loading performance

on the icons.

Finding Account Icons

struct FavIcon {

 let url: URL

 init(issuer: String) {

 let domain = "\(issuer).com"

 let url = URL(string: "https://www.google.com/s2/favicons?

sz=128&domain=\(domain)")!

 self.url = url

 }

}

https://github.com/lorenzofiamingo/swiftui-cached-async-image
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd72b6485-14e3-411a-8897-5bec01cadc2d_690x580.png

Images for each 2FA account

I also added a Metal shader to handle background removal, and make the icon pop a

little more.

Here’s the SwiftUI View extension:

// View+ColorEffect.swift

import SwiftUI

extension View {

 func eraseBackground(backgroundColor: Color = Color(uiColor:

UIColor.secondarySystemBackground)) -> some View {

 modifier(EraseBackgroundShader(backgroundColor:

backgroundColor))

 }

}

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd72b6485-14e3-411a-8897-5bec01cadc2d_690x580.png

And of course the MSL shader code:

Here’s how they look. They’re not bad, but not amazing.

struct EraseBackgroundShader: ViewModifier {

 let backgroundColor: Color

 func body(content: Content) -> some View {

 content

 .colorEffect(ShaderLibrary.eraseBackground(

 .color(backgroundColor)

))

 }

}

#include <metal_stdlib>

#include <SwiftUI/SwiftUI_Metal.h>

using namespace metal;

[[stitchable]]

half4 eraseBackground(

 float2 position,

 half4 color,

 half4 backgroundColor

) {

 if (color.r >= 0.95 && color.g >= 0.95 && color.b >= 0.95) {

 return backgroundColor;

 }

 return color;

}

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fb80f20ba-65cb-48a7-a008-8f8be0ae4f75_689x578.png

Metal shaders to remove the white backgrounds on the icons

I’ve started over-engineering. Let’s stick a pin in this and see how we feel later.

It’s working pretty well now as a basic 2fa app in its own right.

Who would have thought that to be ahead of most of the pack, I just had to not have

an extremely aggressive paywall ($4.99 per week? Seriously?!)

After some boilerplate software development work on the timings, the basic UI, and

the data storage, it’s really working quite nicely now — sticking to the basic SwiftUI

components is a brilliant way to ensure stuff “just works”*.

Gif created from veed.io

*and helps make everything accessible!

Polishing the UI

https://www.veed.io/convert/mp4-to-gif
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fb80f20ba-65cb-48a7-a008-8f8be0ae4f75_689x578.png

I also implemented some nice QoL features I found through my competitor research

such as tap-to-copy.

I utilised accessibility tools like @ScaledMetric and ViewThatFits to ensure the

app works great regardless of your visual needs. I even get light mode for free out of

the box by sticking closely to Apple’s basic SwiftUI components and colours.

// AccountView.swift

@ScaledMetric(relativeTo: .largeTitle) private var iconSize: CGFloat =

36

private var icon: some View {

 CachedAsyncImage(url: FavIcon(issuer: account.issuer).url, content:

{

 $0

 .resizable()

 .aspectRatio(contentMode: .fit)

 }, placeholder: {

 Text(String(account.issuer.first?.uppercased() ??

account.name.first?.uppercased() ?? ""))

 .font(.largeTitle)

 .monospaced()

 })

 .frame(width: iconSize, height: iconSize, alignment: .center)

}

private var code: some View {

 ViewThatFits {

 HStack(alignment: .center, spacing: 16) {

 codeText

 }

 VStack(alignment: .leading, spacing: 4) {

 codeText

 }

 }

}

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fc6ca1f45-01b1-40aa-9a9c-5b3ab0feadc5_800x801.jpeg

Check ’em at the largest accessibility font size

To improve the true core value proposition, I implemented a lot more options for

interestingness:

Sexts, quints, and quads like 000000

Counting sequences like 012345

Hundred-thousands like 300000

Units like 000001 and tens like 000010

Making the App More Interesting(ness)

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fc6ca1f45-01b1-40aa-9a9c-5b3ab0feadc5_800x801.jpeg

Maths constants like pi (314159)

Physics constants like Planck's constant, 661034 (6.6x10⁻³⁴)

Palindromes like 012210

Repeated twos and threes like 121212 and 123123

Some of these were fun little leet-code puzzles to implement, some were annoying

regexes, while some were very straightforward.

Now I’ve updated the Settings UI so that you can sort by either rarity (common, rare,

and ultra-rare), or by type (such as repetitions, constants, sequences, or round

numbers).

func checkThatCounting() -> Bool {

 let characters = Array(self)

 for i in 1..<characters.count {

 if let prevDigit = Int(String(characters[i - 1])),

 let currentDigit = Int(String(characters[i])),

 currentDigit != prevDigit + 1 {

 return false

 }

 }

 return true

}

func checkThatPalindrome() -> Bool {

 self == String(self.reversed())

}

func checkThoseRepeatedThrees() -> Bool {

 self.prefix(3) == self.suffix(3)

}

func checkThoseHunderedThousands() -> Bool {

 suffix(5) == "00000"

}

Probability Theory

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F854f77a9-dbf2-40ba-957b-ae726de1d157_618x546.png

Toggle on the Settings menu

How do I calculate the probabilities of each rarity level?

For perfect counting sequences like 012345, there are only 6 possible sequences (up

to 567890) out of one million possible number combinations.

30 seconds times 1 million combinations, divided by 6 possible sequences, means for

each account you might only expect a perfect counting sequence to occur on average

every 5 million seconds — that is, every 58 days on average.

This is pretty ultra rare.

However, palindromes such as 123321, have 1000 possible 3-sequence numbers that

make them up. This means you could see them every 0.34 days on average! Much more

common.

In the middle, something like repeated twos (e.g. 141414) have 100 possible numbers

(00 to 99), so they happen every 3.5 days on average. So, pretty rare, but not ultra-rare.

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F854f77a9-dbf2-40ba-957b-ae726de1d157_618x546.png

Some of these sequences, like quads, are a little tougher to number crunch, so it was

simpler to generate tens of millions of OTPs and counting the incidence of each kind

of interestingness, to get a feel for their relative frequency.

The app can process 64 interesting 2FA codes quite quickly, but only when I have all

the common Interestingnessenabled. When I only want ultra-rare GETs, the

processing takes a long time.

I need to invoke chunking — while crunching through millions of potential OTPs,

returning and scheduling a notification as soon as a valid interesting code is

discovered.

My old friend the Combine framework gives us a neat solution!

I also used some Tasks so that we can cancel and re-start computation in case, for

instance, a user changes their settings mid-processing. Detaching the tasks ensures

the heavy processing for our crypto and string analysis operations keeps off the UI

thread.

Improving Performance

// CodeGenerator.swift

var codeSubject = PassthroughSubject<OTP, Never>()

func generateCodes(accounts: [Account]) {

 // ...

 codeSubject.send(otp)

}

// CodeViewModel.swift

private var otpComputationTask: Task<Void, Never>?

private var notificationSchedulingTask: Task<Void, Never>?

func recomputeNotifications() {

 handleNotificationScheduling()

 handleOTPComputation()

}

Now the scheduling works pretty smoothly, coming out in sequence instead of a single

large chunk!

This was the one that got away killed me. I’m desperate to use the real check ’em

meme for the app icon. It’s simply perfect.

private func handleNotificationScheduling() {

 notificationSchedulingTask?.cancel()

 notificationSchedulingTask = Task.detached(priority: .high) {

 guard await NotificationScheduler.shared.isAuthorized() else {

return }

 NotificationScheduler.shared.cancelNotifications()

 for await (code, count) in

CodeGenerator.shared.codeSubject.values {

 try? await

NotificationScheduler.shared.scheduleNotification(for: code)

 }

 }

}

private func handleOTPComputation() {

 let accounts = accounts

 otpComputationTask?.cancel()

 otpComputationTask = Task.detached(priority: .high) {

 guard await NotificationScheduler.shared.isAuthorized() else {

return }

 CodeGenerator.shared.generateCodes(accounts: accounts)

 }

}

Scheduled repeatedTwos: 292929 @ 2024-02-25 23:33:30 +0000

Scheduled repeatedTwos: 878787 @ 2024-02-26 06:03:30 +0000

Scheduled quints: 666660 @ 2024-02-26 10:54:00 +0000

Scheduled quints: 255555 @ 2024-02-26 21:11:00 +0000

Scheduled repeatedTwos: 606060 @ 2024-02-26 23:27:00 +0000

Scheduled sexts: 666666 @ 2024-04-16 23:22:00 +0000

Scheduled boltzmannConstant: 141023 @ 2024-04-19 02:05:00 +0000

Scheduled counting: 012345 @ 2024-04-20 04:51:30 +0000

Scheduled planksConstant: 661034 @ 2024-04-20 05:38:00 +0000

The App Icon

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F70f1e657-d75e-473e-b3d3-583d0ea17b8e_800x800.png

“Check ‘em!”

However, my good friend pointed out that our friends over at Lionsgate films might be

feeling a little litigious.

But I had to have it!

Perhaps there is hope after all:

https://knowyourmeme.com/memes/dubs-guy-check-em
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F70f1e657-d75e-473e-b3d3-583d0ea17b8e_800x800.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F7312e09f-3e69-4f86-8b88-0e8820880d7d_626x242.png

Lionsgate’s licensing page

Unlike you, I have faith in the American copyright system.

Partially completed form for requesting permission to use a still from a movie

Now we play the waiting game.

16 days later…

https://www.lionsgate.com/licensing
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F7312e09f-3e69-4f86-8b88-0e8820880d7d_626x242.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F14aaee28-9d9f-484d-b304-e75866e24656_800x299.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F23e6c5ae-9105-4b26-b173-2649f5363669_457x292.png

Crickets.

I’ve lost all faith in the American copyright system. Goddammit, Bob Iger, whatever

happened to fair use?!

This is the best I could get from DALL-E 3. It has the wrong number of fingers, and

it’s the wrong side of the hand, but after trying to prompt-engineer something better

for several hours I am resigned to it.

Check ’em: the logo

DALL-E really didn’t like drawing the back of a hand. I tried.

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Ffbe66b17-b1b4-4353-9885-9d1c3de6cff9_800x800.jpeg

The concept was proven. The app works well! Time for some polish and pet features

before we show the world the joy of Check ‘em.

I created a list of TODOs — new features and bug-fixes — that I could implement in my

V1 before I made my first release.

Naturally, since I don’t have a product manager in sight, I immediately began work on

the lowest-priority task: building out a collection with deep links — I don’t want my

rare GETs to go to waste!

Final Touches

// High priority -

// TODO: - Add ordering as a query item to the stored URL in the

keychain

// TODO: - Haptic buzz on refresh

// TODO: - Only request push notifications when they have entered the

Settings Screen

// TODO: - Add settings link to enable notifications

// TODO: - Bug - Ignore scanned duplicates in the view model accounts -

don't append scans to accounts if it's already there

// TODO: - Cancel processing tasks when opening Settings view

// TODO: - Push notification deep links to an app review prompt, when

the GET is still present

// TODO: - Ultra-rare GETs not being sent?? Can't make them happen

locally in simulator, but quints are fine - they appear to be queued

// TODO: - Bug - Progress view doesn't appear on the second load

// TODO: - Bug - Ignore scanned duplicates in the view model accounts -

don't append scans to accounts if it's already there

// TODO: - Bug - There's a bug where the percentage fluctuates up and

down when there are 2 concurrent calculations

// TODO: - Add TipKit to QR and Settings

// Low priority -

// TODO: - Use @SceneStorage for state restoration; so we aren't waiting

ages for the keychain operations

// TODO: - Look back/forwards one code

// TODO: - Create a "collection" screen using deep links - collecting

the seen GETs as stored items (with a dictionary on the keychain)

Collections

This piece actually helps with a problem we identified original proof of concept: we

need to incentivise users to re-enter the app by making users interact with the

notifications.

Creating a collect-a-thon is a little tricky, because there are a few moving parts:

1. Allow users to tap on notifications and deep link into the app.

2. Securely store the interestingness of the code they tapped.

3. Render these into a collection screen.

Adding a deep link to the notification was fairly simple.

But, a little annoyingly, I had to create an AppDelegate to handle the notifications —

SwiftUI doesn’t quite handle these well on its own yet.

Finally, I lazily added a long, comma-separated list of stored codes in the Keychain.

// Notifications.swift

// ...

content.userInfo = ["deepLink": "checkem://\(otp.code)"]

// AppDelegate.swift

func userNotificationCenter(_ center: UNUserNotificationCenter,

 didReceive response: UNNotificationResponse,

 withCompletionHandler completionHandler:

@escaping () -> Void) {

 let userInfo = response.notification.request.content.userInfo

 if let deepLinkString = userInfo["deepLink"] as? String,

 let deepLinkURL = URL(string: deepLinkString) {

 guard let code = deepLinkURL.code else { return }

 try? CollectionManager.shared.save(code: code)

 }

 completionHandler()

}

This was more a product of a desire to release fast rather than a well-thought-out

engineering decision, one I will come to regret if my power-users approach the soft

limit of 4kB per Keychain item (the hard limit is more like 16MB, so I should be

okay!).

This work paid off rapidly though, as the collection screen quickly started filling up

with my rare GETs!

Collection menu containing all your rare GETs

I originally hid the collection until a user had tapped a notification, but I realised it

was far more compelling to entice a user to collecting ’em all by showing them the

menu option.

// KeychainManager.swift

func storeCollectionItem(code: String) throws {

 var collection = try keychain.get(Constants.collectionKey) ?? ""

 if !collection.isEmpty {

 collection.append(",")

 }

 collection.append(code)

 try keychain.set(collection, key: Constants.collectionKey)

}

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F7edaf952-6647-4a6e-9104-59e43f814386_800x369.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F8911c392-da6a-482e-afad-bdc777004026_452x250.png

The iOS 17 sensoryFeedback API gives us some extremely subtle haptics to play

with, so subtle in fact that I didn’t like them. So I ripped out the Haptic Engine from

Carbn and reused it here.

I simply added a truly atrocious side effect to my existing refresh code:

Don’t try this at home, kids!

There’s a bug where the CachedAsyncImage library is eagerly loading the non-

existent FavIcons, yielding a blurry globe… But I think I will release with this.

It works pretty much 90% of the time, and I’d rather ship than replace one of my pet

third-party SwiftUI libraries.

Haptics

// CodeView.swift

.onReceive(timer) { _ in

 let didChange = viewModel.refresh()

 if didChange {

 HapticEngine.shared.play(haptic: .refresh)

 }

}

Image loading bug

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F8911c392-da6a-482e-afad-bdc777004026_452x250.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe3dea211-ed04-4364-816b-fccd1ccfe542_800x369.jpeg

FavIcon not found for steam.com

Some of the other bugs, I was a little more attentive to before shipping — this one in

particular was pretty bad, since someone might scan a QR code twice and get a weird

duplicate of the same account.

Far from ripping out and replacing a time-saving library, this bug had a single-line-of-

code fix.

Since the Keychain is keying 2FA accounts based on the name, this fix is pretty

sensible.

The Duplication Bug The Duplication Bug

// TODO: - Bug - Ignore scanned duplicates in the view model accounts -

don't append scans to accounts if it's already there

// CodeViewModel.swift

func create(account: Account, url: URL) throws {

 guard !accounts.contains(where: { $0.name == account.name }) else {

return }

 // ...

}

Codes Not Loading

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe3dea211-ed04-4364-816b-fccd1ccfe542_800x369.jpeg

I found another issue with codes not being queued.

It turns out, I misunderstood how @AppStorage actually behaves — the default only

applied to the UI, as opposed to actually storing something in user defaults.

A function to populate UserDefaults on the first app load solved this.

One little bit of improvement used the new iOS 17 TipKit to give a user a bit of an

idea of what to do when they first load into the app.

// TODO: - Ultra-rare GETs not being sent?? Can't make them happen

locally in simulator, but quints are fine - they appear to be queued

// SettingsView.swift

@AppStorage("sexts") private var sexts: Bool = true

// CheckEmApp.swift

@main

struct CheckEmApp: App {

 init() {

 initializeDefaultsIfRequired()

 }

 // ...

 func initializeDefaultsIfRequired() {

 guard UserDefaults.standard.object(forKey: "sexts") == nil else

{ return }

 CodeGenerator.shared.initializeDefaults()

 }

TipKit

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F444d9d7e-c418-4d45-8220-2ee2bb91b433_800x369.jpeg

Tips displayed on first launch

This was surprisingly simple to implement with the new API.

I think we’re ready to ship.

// CodeView.swift

@ViewBuilder

private var tips: some View {

 TipView(QRTip()).tipImageSize(CGSize(width: tipImageSize, height:

tipImageSize))

 TipView(SettingsTip()).tipImageSize(CGSize(width: tipImageSize,

height: tipImageSize))

 TipView(CollectionTip()).tipImageSize(CGSize(width: tipImageSize,

height: tipImageSize))

}

The Store Listing

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F444d9d7e-c418-4d45-8220-2ee2bb91b433_800x369.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F495b97a9-805d-4bbb-be6f-a63cf5f097c7_800x330.png

App store listing

Setting up our store listing via AppScreens, the coup de grâce second screenshot

shows the true power of Check ’em (featuring my cats).

Check ‘em

https://appscreens.com/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F495b97a9-805d-4bbb-be6f-a63cf5f097c7_800x330.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe65ac26f-8375-48e3-bec5-9c5238b9ce29_800x613.jpeg

Seriously?

Sorry France, I don’t have the energy to fill in a form at 11pm at night 🤷♂️

Look, I’m not the most libertarian person in the world, but I don’t want to jump

through several extra hoops to increase my target market by 1%. Do better!

(Sorry to all my French readers)

In short order, we’re set up on App Store Connect and ready to press the button!

Download Check ’em: The Based 2FA App today!

Thanks for reading along with my journey!

This was a pretty fun project: not only did I manage to tickle the part of my geek

brain which loves spotting patterns; I got to handle some nifty processing, threading,

and optimisation problems!

Conclusion

https://apps.apple.com/app/check-em-the-based-2fa-app/id6477842236
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F05b9ac20-2bfc-47a0-9e04-9cdb9af6ebb6_740x407.png

My next step is focusing fully on performance for the v1.1 release, so it loads up

crunches the OTPs even faster than normal!

If you love this app, please give your suggestions on numbers you’d like to see! Finally,

if anyone is keen to see an Android version, I’m more than happy to share my source

code let you to run with it.

Thanks for reading Jacob’s Tech Tavern!

Subscribe for free to receive new posts

and support my work.

13 Likes ∙ 1 Restack

Discussion about this post

Type your email... Subscribe

Previous Next

Write a comment...

Feb 20, 2024

Liked by Jacob Bartlett

Julio Merino

I'm probably in the 10% weirdos camp because I find this brilliant 🙃.

But one thing that isn't clear to me from reading the post (OK, OK, I stopped half-way

through because it's *long*): when do you actually send the notifications? In my mind,

you'd send them like 5 minutes before the interesting codes become valid so that the

receiver can manually open the app and *type* the neat code! Not sure if that's what you

are doing.

LIKE (1) REPLY SHARE

Comments Restacks

https://jacobbartlett.substack.com/p/high-performance-swift-apps
https://substack.com/note/p-141732200/restacks?utm_source=substack&utm_content=facepile-restacks
https://blog.jacobstechtavern.com/p/building-a-2fa-app-that-detects-patterns/comment/49931097
https://substack.com/profile/72061655-julio-merino?utm_source=substack-feed-item
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

1 more comment...

1 reply by Jacob Bartlett

1dRasmus

This is great! 😄 A case of doing it because it's interesting - love it! On another note, I've

been mildly stunned by how often the same numbers come up when using Microsoft

Authenticator. They're only using two digits for their 2FA so maybe it isn't that weird that I

see the same numbers from time to time. Could it have to do with their chosen time

interval, how that is divisible by the day and when I usually need to log in 🤷🏼 Or perhaps

it's just a perceived pattern that actually doesn't exist (most likely)..

LIKE REPLY SHARE

© 2025 Jacob Bartlett ∙ Privacy ∙ Terms ∙ Collection notice

Substack is the home for great culture

https://blog.jacobstechtavern.com/p/building-a-2fa-app-that-detects-patterns/comments
https://blog.jacobstechtavern.com/p/building-a-2fa-app-that-detects-patterns/comment/49931097
https://blog.jacobstechtavern.com/p/building-a-2fa-app-that-detects-patterns/comment/100659041
https://substack.com/profile/187562308-rasmus?utm_source=substack-feed-item
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://substack.com/privacy
https://substack.com/tos
https://substack.com/ccpa#personal-data-collected
https://substack.com/

