
11 min readOn Running systemd-nspawn
Containers
February 4, 2022

I’d like to talk more about a container technology that I really like that I touched upon in a previous

article: systemd-nspawn.

systemd-nspawn is a container manager that allows you to run a full operating system or a

command in a directory tree. Conceptually, it is similar to the venerable chroot, but it is much more

secure.

While chroots do perform filesystem isolation, they don’t provide any of the security benefits that

cgroups and namespaces provide. Additionally, they’re not easy to setup, unless, of course, you’re

using a tool like debootstrap or pacstrap.

See my previous articles on using chroot in some pretty sweet ways:

On Running a Tor Onion Service in a Chroot

On Escaping a Chroot

On Stack Smashing, Part Two

systemd-nspawn, on the other hand, gives you as much security and configuration as you would

want and expect and is as easily configurable as better-known tools like Docker (although it operates at

a lower-level).

Articles Contact Links Software Support Talks

https://benjamintoll.com/2018/08/20/on-systemd-nspawn/
https://benjamintoll.com/2018/08/20/on-systemd-nspawn/
https://www.man7.org/linux/man-pages/man1/systemd-nspawn.1.html
https://en.wikipedia.org/wiki/Chroot
https://wiki.debian.org/Debootstrap
https://man.archlinux.org/man/extra/arch-install-scripts/pacstrap.8.en
https://benjamintoll.com/2021/08/20/on-running-a-tor-onion-service-in-a-chroot/
https://benjamintoll.com/2019/05/18/on-escaping-a-chroot/
https://benjamintoll.com/2019/04/10/on-stack-smashing-part-two/
https://benjamintoll.com/
https://benjamintoll.com/
https://benjamintoll.com/contact/
https://benjamintoll.com/links/
https://benjamintoll.com/software/
https://benjamintoll.com/support/
https://benjamintoll.com/talks/

To create a container, systemd-nspawn expects a root filesystem and optionally a JSON container

configuration file, which of course brings to mind an OCI runtime bundle, because systemd-

nspawn is fully OCI compliant. Those familiar with tools like runc will be familiar with this

requirement.

One can use many of the same methods to get a root filesystem (rootfs) as documented in my

article on runc.

By using the machine option (--machine or -M) with systemd-nspawn, the operating system

tree (root filesystem) is automatically searched for in a couple places, most notably in

/var/lib/machines, which is the recommended directory on the system.

The intent of this article is to quickly and succinctly outline several ways to get started using

containers with systemd-nspawn. Hopefully, it will also encourage you to think more critically of

tools like Docker and determine if they are as necessary as all the hype surrounding them would have

you believe.

We’ll be running the Tor browser in a container managed by systemd-nspawn.

Note that the following assumptions are made:

systemd-nspawn is already installed on your system.

All the following examples will assume that the current working directory is

/var/lib/machines.

All commands are run as the root user to save typing sudo for every command.

$ sudo apt install systemd-container

https://github.com/opencontainers/runtime-spec/blob/main/spec.md
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc

Hey, ho, let’s go.

systemd-nspawn Container Settings File

Examples

docker export

debootstrap

mkosi

machinectl pull-tar

machinectl pull-raw

More Commands

Exporting

List Running Containers

List All Containers

List Transfers

Querying the Container Status

Removing the Container

Running Miscellaneous Commands in the OS Tree

fzf

Conclusion

References

systemd-nspawn Container Settings File

What is a container settings file? This is an optional INI-like file that contains startup configurations

that will be applied to your container by the systemd-nspawn container manager. Any command-

line option that is given to systemd-nspawn can be put in the settings file, although the names will

https://en.wikipedia.org/wiki/INI_file

be different (see the docs). Simply write them to the file and let systemd-nspawn worry about the

rest. Not a bad deal, friend.

If you’re familiar with systemd service files, then this will be familiar to you.

The systemd-nspawn container settings file is named after the container to which it is applied. For

instance, our container is called tor-browser, so the file should be called tor-

browser.nspawn. That’s easy enough.

Where should they go? That’s a great question, geezer!

The algorithm searches the following locations, in order:

/etc/systemd/nspawn/

/run/systemd/nspawn/

/var/lib/machines/

Persistent settings file should be placed in /etc/systemd/nspawn/, and, unlike the non-

privileged location (see below), every setting contained therein will take effect since this is a privileged

location (i.e., only privileged users should be able to access any configs in the /etc directory).

Do not put anything in /run/systemd/nspawn/ that you want to survive a reboot, as

the /run filesystem is temporary and any runtime data put there is placed in volatile

memory.

$ df /run --output=fstype

Type

tmpfs

However, any settings files found in the non-privileged /var/lib/machines location will only

have a subset of those settings applied. As you may have guessed, any settings that grant elevated

privileges or additional capabilities are ignored. This is so untrusted or unvetted files downloaded from

the scary Internet don’t cause undue harm and aren’t automatically applied upon container creation.

In order for the Tor browser to be properly launched, the following systemd-nspawn file must be

installed in /etc/systemd/nspawn:

tor-browser.nspawn

This is equivalent to the following command line statement:

[Exec]

DropCapability=all

Environment=DISPLAY=:0

Hostname=kilgore-trout

NoNewPrivileges=true

Parameters=./start-tor-browser --log /dev/stdout

PrivateUsers=true

ProcessTwo=true

ResolvConf=copy-host

Timezone=copy

User=noroot

WorkingDirectory=/usr/local/bin/tor-browser

$ sudo systemd-nspawn \

 --drop-capability all \

 --setenv DISPLAY=:0 \

 --hostname kilgore-trout \

Clearly, the settings file is much more convenient and allows us to start the container by simply typing:

In addition, there are more parameters we can set, such as filtering system calls, bind mounts, overlay

or union mount points, and much more, but that is out of the scope of this article. And we haven’t even

covered the [FILE] and [NETWORK] sections of the settings file.

If an systemd-nspawn settings file isn’t present, the container will still launch, but to a

virtual shell.

Let’s now look at some examples.

Examples

docker export

Here is our old “friend” docker export. While Docker makes it easy to extract a container’s root

filesystem as a tarball, it needs, well, Docker to do it. That kinda sucks.

 --no-new-privileges true \

 --private-users true \

 --as-pid2 \

 --resolv-conf copy-host \

 --timezone copy \

 --user noroot \

 --directory tor-browser \

 bash -c "/usr/local/bin/tor-browser/start-tor-browser --log /dev/st

$ sudo systemd-nspawn --machine tor-browser

I don’t know about you, but I don’t want multiple container technologies/runtimes/managers on my

base system. Since most distros are already using systemd, the ability to create and run containers is

already installed and just waiting for your fat little fingers to type the necessary commands.

So, installing software additional software to run containers when you already have the ability to run

containers is nonsensical. It’s like installing an editor like Visual Studio Code when you already have

Vim.

I’ve been grudgingly using Docker in my personal projects for the sake of convenience, and it’s

exactly why I am giddy about moving away from it. Convenience is the scourge of understanding.

Anyway, I digress. Here is a very simple way to run the Tor browser as a systemd-nspawn

container:

The Dockerfile used to create this container image is straightforward.

Because of the convenience of the Dockerfile, Docker makes it easy to create a container with some

provisioning already applied.

However, as I’ll demonstrate next, it’s not any effort to create a shell script from the Dockerfile to do

the same thing. Shell scripts are some of our best friends!

And after all, it’s pretty silly to install Docker only as a conduit for systemd-nspawn. Wouldn’t it

be better to learn other ways of getting a root filesystem?

Which leads us to…

$ sudo mkdir tor-browser \

 && docker export $(docker create btoll/tor-browser:latest) \

 | tar -x -C tor-browser

$ sudo systemd-nspawn -M tor-browser

https://github.com/btoll/machines/blob/master/tor-browser/Dockerfile

debootstrap

I’ve been using debootstrap for years. It’s a really great way to quickly and easily bootstrap a

chroot by downloading a root filesystem with optional packages.

As mentioned in the previous example, I’ve created a shell script that provisions the container, and it’s

a simple step to copy it into the new OS tree created by debootstrap.

To run the script, we’ll chroot into the container (well, what will become the container).

That was easy! No big deal.

If we want to share this with a friend or import it into another tool, we can export the container as a

tarball and upload it to a server. This can allow us to later download and create and run containers (the

same concept as Docker Hub).

$ sudo debootstrap \

 --arch=amd64 \

 --variant=minbase \

 bullseye \

 tor-browser \

 http://deb.debian.org/debian

$ sudo cp install_tor_browser.sh tor-browser/

$ sudo chroot tor-browser/

Run the installer script in the chroot.

root@sulla:/# ./install_tor_browser.sh

root@sulla:/# exit

$ sudo systemd-nspawn --machine tor-browser

https://github.com/btoll/machines/blob/master/tor-browser/install_tor_browser.sh

After the container is tarred up, anyone that wants to use it can simply download it and run it without

having to do any of the setup steps above (copying and installing).

We’ll soon see an example of how we can pull that tarball down from a remote server.

mkosi

A tool by Lennart Poettering, mkosi is an easy way to create an OSI (operating system image) or OS

tree for use by systemd-nspawn and any container technology that can “consume” a root

filesystem. Written in Python, it is well-documented (see its man page) and easy to use.

There are many options and cool features but covering them is outside the scope of this

article.

Creating an OSI is easy. Here you go:

$ sudo machinectl export-tar tor-browser tor-browser.tar.xz

$ sudo apt install mkosi -y

$ sudo mkosi \

 --distribution debian \

 --release bullseye \

 --format gpt_ext4 \

 --postinst-script install_tor_browser.sh

 --with-network \

 -o tor-browser.raw

$ sudo systemd-nspawn --machine tor-browser

https://en.wikipedia.org/wiki/Lennart_Poettering
https://github.com/systemd/mkosi
https://en.wikipedia.org/wiki/System_image
https://man.archlinux.org/man/community/mkosi/mkosi.1.en

Note that here I’m giving the mkosi tool the install_tor_browser.sh script as a value to the

--postinst-script. This saves us a couple of the steps that we had to do manually when using

debootstrap in the previous example, namely:

1. Copying the script from the host to the chroot.

2. Logging into the chroot.

3. Executing the script.

Easy peasy.

machinectl pull-tar

We’re simply downloading the tarball from a previous example and running it as-is. No need to re-run

the Tor browser installation script, of course.

Although unnecessary here, I included the --resolv-conf option here to show how easy

it is to get a DNS resolver for containers that need one.

machinectl pull-raw

I don’t use this much, but I’m adding it here for its usefulness.

$ sudo machinectl pull-tar \

 http://example.com/tor-browser.tar.xz \

 tor-browser

$ sudo systemd-nspawn \

 --resolv-conf copy-host \

 --machine tor-browser

Note that mkosi can also build an image that you could use here as the subject of pull-

raw.

More Commands

This is not even close to a comprehensive list. For example, you can copy files to and from a running

container, but I haven’t any examples for that.

As always, read the docs.

Exporting

As we’ve already seen, we can easily export a container’s root filesystem as a tarball. Then, simply

upload this to an accessible storage area for other people and processes.

This is the same workflow that has been around for hundreds of thousands of years.

Also, export as image: machinectl export-raw

$ sudo machinectl pull-raw \

 http://cloud-images.ubuntu.com/focal/current/focal-server-cloudimg-

 rootfs

$ sudo systemd-nspawn --machine rootfs

Spawning container rootfs on /var/lib/machines/rootfs.raw.

Press ^] three times within 1s to kill container.

root@rootfs:~#

$ sudo machinectl export-tar tor-browser tor-browser.tar.xz

List Running Containers

List All Containers

From the man page:

List all containers without the header and footer:

$ machinectl list

MACHINE CLASS SERVICE OS VERSION ADDRESSES

tor-browser container systemd-nspawn debian 11 -

ubuntu-focal container systemd-nspawn ubuntu 20.04 -

list-images

 Show a list of locally installed container and VM images. This

 disk images and container directories and subvolumes in /var/lib

 other search paths, see below). Use start (see above) to run a c

 of the listed images. Note that, by default, containers whose n

 a dot (".") are not shown. To show these too, specify --all. Not

 image ".host" always implicitly exists and refers to the image t

 booted from.

$ machinectl list-images

NAME TYPE RO USAGE CREATED MODIFIED

hugo directory no n/a n/a n/a

tor-browser directory no n/a n/a n/a

2 images listed.

List Transfers

Downloading and exporting can take a while. Let’s check the status!

Querying the Container Status

Removing the Container

$ machinectl list-images --no-legend

hugo directory no n/a n/a n/a

tor-browser directory no n/a n/a n/a

$ sudo machinectl list-transfers

ID PERCENT TYPE LOCAL REMOTE

 1 n/a export-tar tor-browser

 1 transfers listed.

$ sudo machinectl status tor-browser

tor-browser(88544b92092430bc5d3fbbffc12a2f04)

 Since: Fri 2022-02-04 19:54:28 EST; 4h 29min ago

 Leader: 1380829 ((sd-stubinit))

 Service: systemd-nspawn; class container

 Root: /var/lib/machines/tor-browser

 OS: Debian GNU/Linux 11 (bullseye)

 Unit: machine-tor\x2dbrowser.scope

 ...

When you’re absolutely sure that you’re done with it, you can remove both the machine and the

systemd-nspawn service file in one fell swoop:

Running Miscellaneous Commands in the OS Tree

$ sudo machinectl remove tor-browser

$ sudo systemd-nspawn -M tor-browser --quiet uname -a

Linux kilgore-trout 5.11.0-49-generic #55-Ubuntu SMP Wed Jan 12 17:36:3

$ sudo systemd-nspawn -M tor-browser --quiet du -hs

264M .

$ sudo systemd-nspawn -M tor-browser --quiet cat /etc/os-release

PRETTY_NAME="Debian GNU/Linux 11 (bullseye)"

NAME="Debian GNU/Linux"

VERSION_ID="11"

VERSION="11 (bullseye)"

VERSION_CODENAME=bullseye

ID=debian

HOME_URL="https://www.debian.org/"

SUPPORT_URL="https://www.debian.org/support"

BUG_REPORT_URL="https://bugs.debian.org/"

$ sudo systemd-nspawn -M tor-browser --quiet df -h

Filesystem Size Used Avail Use% Mounted on

/dev/nvme0n1p2 468G 61G 384G 14% /

tmpfs 1.6G 0 1.6G 0% /tmp

tmpfs 4.0M 0 4.0M 0% /dev

tmpfs 1.6G 0 1.6G 0% /dev/shm

fzf

Using the amazing command-line fuzzy finder tool (fzf), I wrote a simple bash function that will

list all of the machine images in /var/lib/machines and allow you to select one. Once the

selection is made, it will create and launch the container:

Conclusion

This article could also be called "On Getting Rid of Docker", since that it is one of my

goals. After all, if you’re running a Linux distro, chances are that the init system is systemd, so why

not use systemd-nspawn?

There’s no need to install containerd and runc, which Docker needs and installs by default. I

don’t have anything against them, mind you, and systemd-nspawn may not be the best tool for the

job.

Unfortunately, though, most developers don’t even know that there are options outside of Docker, or

that they’re not as “convenient”. Hopefully, this article has disabused some of that notion.

tmpfs 3.1G 12K 3.1G 1% /run

tmpfs 1.6G 1.9M 1.6G 1% /run/host/incoming

tmpfs 4.0M 0 4.0M 0% /sys/fs/cgroup

nspawn() {

 sudo systemd-nspawn --machine \

 $(machinectl list-images --no-legend | awk '{ print $1 }' | fzf

 --quiet

}

https://github.com/junegunn/fzf

References

systemd-nspawn (Debian docs)

systemd-nspawn (Arch Linux docs)

Running sid in systemd-nspawn

Running containers with systemd-nspawn

mkosi — A Tool for Generating OS Images

Ubuntu Cloud Images

Debian Official Cloud Images

Made with

https://wiki.debian.org/nspawn
https://wiki.archlinux.org/title/Systemd-nspawn
https://wiki.debian.org/Packaging/Pre-Requisites/nspawn
https://www.youtube.com/watch?v=u3urXzJU1X8
http://0pointer.net/blog/mkosi-a-tool-for-generating-os-images.html
http://cloud-images.ubuntu.com/
https://cloud.debian.org/images/cloud/
https://gohugo.io/
https://gohugo.io/

