
A Neighborhood of Infinity
S u n d a y , M a y 0 3 , 2 0 0 9

The Three Projections of Doctor Futamura

The Three Projections of Futamura are a sequence of applications of a programming technique called 'partial
evaluation' or 'specialisation', each one more mind-bending than the previous one. But it shouldn't be
programmers who have all the fun. So I'm going to try to explain the three projections in a way that non-
programmers can maybe understand too. But whether you're a programmer or not, this kind of self-referential
reasoning can hurt your brain. At least it hurts mine. But it's a good pain, right?

So rather than talk about computer programs, I'll talk about machines of the mechanical variety. A bit like
computer programs, these machines will have some kind of slot for inputting stuff, and some kind of slot where
output will come out. But unlike computer programs, I'll be able to draw pictures of them to show what I'm talking
about. I'll also assume these machines have access to an infinite supply of raw materials for manufacturing
purposes and I'll also assume that these machines can replicate stuff - because in a computer we can freely
make copies of data, until we run out of memory at least.

A really simple example of a machine is one that has a slot for inputting blanks, and outputs newly minted coins:

That's a dedicated $1 manufacturing machine. We could imagine that internally it stamps the appropriate design
onto the blank and spits out the result.

It'd be more interesting if we could make a machine with another input slot that allowed us to input the description
of the coin. By providing different inputs we could mint a variety of different coins with one machine. I'm going to
adopt the convention that when we want to input a description we input a picture of the result we want. I'll draw
pictures as rectangles with the subject inside them. Here's a general purpose machine manufacturing pound
coins:

Introduction

Minting coins

http://blog.sigfpe.com/?m=1
http://en.wikipedia.org/wiki/Partial_evaluation#Futamura_projections
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjg-3P2lkIeVDbQ_KaGvkdJD2jTQgVwzOI9E6tA4onVLW0hEIvjvwpBsD-cKKAxMvrChssoKFw-N6HVhPtk6cxtltxqte9KiyPRU5_XFJjJCCxKZj5-YZrKSDyNSvX4A30fGgba/s1600-h/dollar_minting.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjg-3P2lkIeVDbQ_KaGvkdJD2jTQgVwzOI9E6tA4onVLW0hEIvjvwpBsD-cKKAxMvrChssoKFw-N6HVhPtk6cxtltxqte9KiyPRU5_XFJjJCCxKZj5-YZrKSDyNSvX4A30fGgba/s1600-h/dollar_minting.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEggOWsFsk9-UN3w5vCw2Zy4x81RSHnLbeaVlswsnF1yyXYtEYl5np-Iaar2ZH2qsaAscoH9jJ6Dd1t-rNyonHPSoUeFyDESMw8IrjK-nchoz551IA6RWvQHHK0oq49-zbXGnEo5/s1600-h/general_minting.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEggOWsFsk9-UN3w5vCw2Zy4x81RSHnLbeaVlswsnF1yyXYtEYl5np-Iaar2ZH2qsaAscoH9jJ6Dd1t-rNyonHPSoUeFyDESMw8IrjK-nchoz551IA6RWvQHHK0oq49-zbXGnEo5/s1600-h/general_minting.png

The same machine could make dollars, zlotys or yen. You could imagine this machine works by taking the
description and then milling the coin CNC style. We call such a machine an interpreter. It interprets the
instructions and produces its result.

The interpreter has a great advantage over the dedicated dollar mint. You make make any kind of coin. But it's
going to run a lot slower. The dedicated minter can just stamp a coin in one go. The interpreter can't do this
because every input might be different. It has to custom mill each coin individually. Is there a way to get the
benefits of both types of machine? We could do this: take the coin description and instead of milling the coin
directly we mill negative reliefs for both sides of the coin. We then build a new dedicated minting machine that
uses these negatives to stamp out the coin. In other words we could make a machine that takes as input a coin
description and outputs a dedicated machine to make that type of coin. This kind of machine making machine is
called a compiler. It takes a set of instructions, but instead of executing them one by one, it makes a dedicated
machine to perform them. Here's one in action:

So here are the two important concepts so far:

Interpreters: these take descriptions or instructions and use them to make the thing described.
Compilers: these take descriptions or instructions and use them to make a machine dedicated to making the thing
described. The process of making such a machine from a set of instructions is known as compiling.

The Projections of Doctor Futamura help make clear the relationship between these kinds of things.

We need one more important concept: the specialiser. Suppose we have a machine that has two inputs slots, A
and B. But now suppose that when we use the machine we find that we vary the kind of thing we put into slot B,
but always end up putting the same thing into slot A. If we know that slot A will always get the same input then we
could streamline the machine using our knowledge of the properties of A. This is similar to the minting situation - if
we know we're always going to make $1 coins then we can dedicate our machine to that purpose. In fact, if we
know that we're always going to input the same thing into slot A we don't even need slot A any more. We could
just stick an A inside the machine and whenever the user inputs something to slot B, the machine would then
replicate the A and then use it just as if it had been input.

In summary, given a machine with two slots A and B, and given some input suitable for slot A, we could redesign it
as a machine with just a B slot that automatically, internally self-feeds the chosen item to A. But we can often do
better than this. We don't need to self-feed stuff to slot A. We might be able to redesign the way the machine
works based on the assumption that we always get the same stuff going into slot A. For example, in the minting
example a dedicate $1 minter was more specialised than just a general purpose minter that interpreted the

Specialisation

http://en.wikipedia.org/wiki/CNC
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Compiler
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhhAKh-RB4VGMHsAYI707pl5vcpLCsibqslMGTNwT3yBp1TZK6HU6CsvO7AM9ien-wFg0g5mEt5kc4jKtqPh16NO40Kj9br1G6AMnwEEBm9Y6kvKbcaWXV9XVvS0JCuLhJ4I3fh/s1600-h/compiling.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhhAKh-RB4VGMHsAYI707pl5vcpLCsibqslMGTNwT3yBp1TZK6HU6CsvO7AM9ien-wFg0g5mEt5kc4jKtqPh16NO40Kj9br1G6AMnwEEBm9Y6kvKbcaWXV9XVvS0JCuLhJ4I3fh/s1600-h/compiling.png

instructions for making a $1 coin. This process of customising a machine for a particular input to slot A is called
specialisation or partial evaluation.

Now imagine we have a machine for automatically specialising designs for machines. It might have two slots: one
for inputting a description for a two slot machine with slots A and B, and one for inputting stuff suitable for slot A. It
would then print out a description for a customised machine with just a slot B. We could call it a specialisation
machine. Here is one at work:

It's converting a description of a two input machine into a description of a one input machine.

The process of specialisation is similar to what I was talking about with dedicated minting machines. Rather than
just have a similarity we can completely formalise this. Note that the interpreter above takes two inputs. So the
design for an interpreter could be fed into the first input of a specialiser. Now we feed a description the coin we
want into slot B. The specialiser whirrs away and eventually outputs a description of a machine that is an
interpreter that is dedicated to making that one particular coin. The result will describe a machine with only one
input suitable for blanks. In other words, we can use a specialiser as a compiler. This is the first of Doctor
Futamura's Projections. Here's a picture of the process at work:

What this shows is that you don't need to make compilers. You can make specialisers instead. This is actually a
very practical thing to do in the computing world. For example there are commercial products (I'm not connected
with that product in any way) that can specialise code to run on a specific architecture like CUDA. It's entirely
practical to convert an interpreter to a compiler with such a tool. By writing a specialiser, the purveyors of such
tools allow third parties to develop their own compilers and so this is more useful than just writing a dedicated
compiler.

The First Projection

The Second Projection

http://en.wikipedia.org/wiki/Partial_evaluation
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhDaqrJhW68ZUYvrOtbgl6hJgyWwBF-zKSxw8AHauhjgXcnl451KnCuiZFgjhhAGmP-abVIXuGNz_9PemBlWf7JGfO7RwfCp8WhKYKQfOj6c_rbvOHPxmAzfltUM9b6g68kVTOA/s1600-h/specialisation.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhDaqrJhW68ZUYvrOtbgl6hJgyWwBF-zKSxw8AHauhjgXcnl451KnCuiZFgjhhAGmP-abVIXuGNz_9PemBlWf7JGfO7RwfCp8WhKYKQfOj6c_rbvOHPxmAzfltUM9b6g68kVTOA/s1600-h/specialisation.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiDcou-mgeg4InzEMc8Ku0aah6fWa-cNy5zhspn0GR3AO63dmVGWtRwMYK_zompljy8NvJvhTdPfX0b3-V7Lm_Gr6bIQAnDW3hqy-XB7qkuFoCh6bsb_Nf_OZY3LvCUcmK0YNAR/s1600-h/projection1.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiDcou-mgeg4InzEMc8Ku0aah6fWa-cNy5zhspn0GR3AO63dmVGWtRwMYK_zompljy8NvJvhTdPfX0b3-V7Lm_Gr6bIQAnDW3hqy-XB7qkuFoCh6bsb_Nf_OZY3LvCUcmK0YNAR/s1600-h/projection1.png
http://www.rapidmind.net/
http://en.wikipedia.org/wiki/CUDA

Time to kick it up a notch. The first input to the specialiser is a description of a two input machine. But the
specialiser is itself a two input machine. Are you thinking what I'm thinking yet? We could stuff a description of a
specialiser into the specialiser's own first input! In the first projection we provided an interpreter as input to the
specialiser. If we know we're always going to want to use the same interpreter then we could streamline the
specialiser to work specifically with this input. So we can specialise the specialiser to work with our interpreter like
this:

But what is that machine whose description it has output? An interpreter takes as input a description of how to
operate on some stuff, like turning blanks into coins. In effect, the output machine has the interpreter built into it.
So it takes descriptions and outputs a machine for performing those instructions. In other words it's a compiler. If
the specialiser is any good then the compiler will be good too. It won't just hide an interpreter in a box and feed it
your description, it will make dedicated parts to ensure your compiler produces a fast dedicated machine. And
that is Doctor Futamura's Second Projection.

But we can go further. The specialiser can accept a description of a specialiser as its first input. That means we
can specialise it specifically for this input. And to do that, we use a specialiser. In other words we can feed a
descrption of a specialiser into both inputs of the specialiser! Here we go:

But what is the X machine that it outputs? In the second projection we pass in an interpreter as the second
argument and get back a compiler. So the third projection gives us a dedicated machine for this task. The X
machine accepts the description of an interpreter as input and outputs the description of a compiler. So the X
machine is a dedicated interpreter-to-compiler converter. And that is the Third Projection of Doctor Futamura.

If we have a specialiser we never need to make a compiler again. We need only design interpreters that we can

The Third Projection

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjUINEghQwNyHwvz26499N9z3lwTXwjLJk-11VTG1U9Z-UuTejPi2v5hq30YMUMqgVAsYSgvCi46De7aa0XJzjJEb-HZV1emHYiGi6JDWov_UdJWu9D56iamOqm-6hELJiMlJ-A/s1600-h/projection2a.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjUINEghQwNyHwvz26499N9z3lwTXwjLJk-11VTG1U9Z-UuTejPi2v5hq30YMUMqgVAsYSgvCi46De7aa0XJzjJEb-HZV1emHYiGi6JDWov_UdJWu9D56iamOqm-6hELJiMlJ-A/s1600-h/projection2a.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgyZkN4GrKSzHAX7KuhXkF3nQTD2l3c39TawowP5zIOeCJdUGqoDGhN_MIENTqfmc5TtG24yfEY9SNSuMzEBqQefKtWaBp5AJPZ9hx9abMSZ_cbriFFjhyTVVY5vlszn8Oq63Od/s1600-h/projection3.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgyZkN4GrKSzHAX7KuhXkF3nQTD2l3c39TawowP5zIOeCJdUGqoDGhN_MIENTqfmc5TtG24yfEY9SNSuMzEBqQefKtWaBp5AJPZ9hx9abMSZ_cbriFFjhyTVVY5vlszn8Oq63Od/s1600-h/projection3.png

automatically convert to compilers. In general it's easier to write interpreters than compilers and so in principle
this makes life easier for programmers. It also allows us to compartmentalise the building of compilers. We can
separate the interpreter bit from the bit that fashions specific parts for a task. The specialiser does the latter so
our would-be compiler writer can concentrate on the former. But who would have guessed that passing a
specialiser to itself twice would give us something so useful?

So here are the projections:

1. Compiling specific programs to dedicated machines.
2. Making a dedicated machine for compilation from an interpreter.
3. Making a machine dedicated to the task of converting interpreters into compilers.

There are lots of variations we can play with. I've just talked about descriptions of things without saying much
about what those descriptions look like. In practice there are lots of different 'languages' we can use to express
our descriptions. So variations on these projections can generate descriptions in different languages, possibly
converting between them. We might also have lots of different specialisers that are themselves optimised for
specific types of specialisation. The Futamura projections give interesting ways to combine these. And there are
also variations for generating dedicating machines for other tasks related to compiling - like parsing the
descriptions we might feed in as input. If you want to read more on this subject there's a whole book online with
example code. They're not easy things to design. I think that specialisation is a killer feature that I'd like to see
more of. Present day compilers (and here I'm talking about computers, not machines in general) are hard-coded
black boxes for the task of compilation. They're not very good at allowing you to get in there and tweak the way
compilation occurs - for example if you want to generate code according to a strategy you know. Specialisation is
a nice alternative to simply bolting an API onto a compiler. It would make it easy for anyone to write optimising
and optimised compilers for their own languages and combine such compilers with interpreters for interactive
instead of offline compilation. I learnt about this stuff, as well as lots of other stuff in my blog, from the excellent
Vicious Circles. The theory is closely related to the theory of writing quines that I used for my three language
quine. And if you keep your ears to the ground you can hear rumours of a fabled fourth projection...

Appendix

I wanted to address some of the comments so I've added an appendix where I use the Haskell type checker to
tighten up the statements I make above. There are some places I made some choices and I decided to make the
specialiser output machines rather than pictures. This code doesn't actually do anything.

One important thing to note is that with these definitions the first projection is a function describing the action of a
machine after it has been given one input. The second and third projections are dedicated machines.

> module Futamura where

I'm using P a to represent the type of a Picture (or Plan, or Program) of how to perform an operation of type a and
M a to represent a Machine (or executable) that executes such an operation.

I use M because I want to make explicit what is actually a machine. In Haskell a type a -> b -> c can be thought
of as a machine that takes an input of type a and an input of type b and outputs a c, or as a machine that takes as

Summary

http://www.itu.dk/people/sestoft/pebook/
http://books.google.com/books?id=Xut5JAAACAAJ
http://blog.sigfpe.com/2008/02/third-order-quine-in-three-languages.html
http://blog.sigfpe.com/2008/02/third-order-quine-in-three-languages.html
http://portal.acm.org/citation.cfm?id=1480954

input an a and outputs another machine that makes a c from a b. I distinguish those by using M (a -> b -> c) for
the former and M (a -> M (b -> c)) for the latter.

I'm not actually going to built a Futamura specialiser so the right hand sides hare are just filler:

> data P a = P

> data M a = M

Running a machine gives a way to perform what the machine is designed to do. We're not really running
machines in Haskell so we have an undefined right hand side.

> run :: M a -> a

> run = undefined

A specialiser is a machine that takes as first input a picture of a process mapping an a and a b to a c. It also takes
as argument the specialised value for the input for the process. It then outputs a dedicated machine for the
specialised process:

> specialise :: M (P (a -> b -> c) -> a -> M (b -> c))

> specialise = undefined

We actually need the picture of the specialiser as it's going to be specialised:

> specialisePicture :: P (P (a -> b -> c) -> a -> M (b -> c))

> specialisePicture = undefined

For the first projection we'll need an interpreter. An interpreter is a general purpose machine that takes pictures of
how to map an a to a b, as well as an actual a, and can then give you a b:

> interpreter :: M (P (a -> b) -> a -> b)

> interpreter = undefined

And what we really need is a picture of an interpreter:

sigfpe at Sunday, May 03, 2009

> interpreterPicture :: P (P (a -> b) -> a -> b)

> interpreterPicture = undefined

The first projection turns a picture into a dedicated machine. So it functions as a compiler. But note that it's not
itself a dedicated machine. It's a general purpose machine which acts as a compiler when given (a picture of) an
interpreter as first input:

> proj1 :: P (input -> output) -> M (input -> output)

> proj1 = run specialise interpreterPicture

The second projection is a dedicated machine that does the task of proj1. So it's a compiler:

> proj2 :: M (P (input -> output) -> M (input -> output))

> proj2 = run specialise specialisePicture interpreterPicture

An interpreter is something that can take a computer program and some input and generate the output you
expect from the program. A compiler, on the other hand, converts programs into dedicated machines to process
the input into the output. And that's exactly what the third projection does:

> proj3 :: M (P (program -> input -> output) -> M (program -> M (input -> output)))

> proj3 = run specialise specialisePicture specialisePicture

25 comments:

Martijn Monday, 04 May, 2009

https://www.blogger.com/profile/08096190433222340957
https://www.blogger.com/profile/08096190433222340957
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?m=1
https://www.blogger.com/profile/03420202886083056827
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241421600000&m=1#c884211953506902165

That's really interesting.

I bet the higher projections are progressively harder to implement. Could it be that they are so hard to implement that
they are not worth implementing anymore?

Reply

Josef Monday, 04 May, 2009

Thanks for the post, I really like it.

I think it's worth clarifying one thing though. You say "If we have a specialiser we never need to make a compiler
again". Although it's technically correct it might be read as if we will never ever need a compiler as long as we have
specialisers. But that's not true. A compiler is the only machine which turns a description of a machine into an actual
machine. So it's not specialisers all the way down, we need a compiler at the bottom.

Reply

sigfpe Monday, 04 May, 2009

Josef,

Or you use one of the language changing specialisers I mentioned - In particular one that targets assembly language.

Reply

Anonymous Monday, 04 May, 2009

I wonder how many others read that as Futurama and thought of Dr. Zoidberg.

Reply

Josef Monday, 04 May, 2009

Ah, yes, of course.

Anyhow, it's still the case that your pedagogy breaks down in the particular case for machine language, when the
description and the actual program is the same. It's a shame, because I think it's very clear otherwise.

Reply

Arnar Birgisson Monday, 04 May, 2009

Excellent article, as usual. Although I do have a tiny bit of feeling that there is a even better analogy out there
somewhere.

Reply

Arnar Birgisson Monday, 04 May, 2009

Sorry for a second comment, but what does the specializer depend on? I.e. when we build a specializer (a partial
evaluator) for a programming language, I imagine it depends on the programming language in question, right? Does it
also depend on the target language?

javascript:;
https://www.blogger.com/profile/13272830598221833253
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241439360000&m=1#c7612310449114014971
javascript:;
https://www.blogger.com/profile/08096190433222340957
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241443620000&m=1#c196038489626999653
javascript:;
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241453640000&m=1#c4821494618942301940
javascript:;
https://www.blogger.com/profile/13272830598221833253
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241453940000&m=1#c4893269636851050822
javascript:;
https://www.blogger.com/profile/12073820949049315334
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241454180000&m=1#c7110093603310155443
javascript:;
https://www.blogger.com/profile/12073820949049315334
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241454420000&m=1#c6035777184684988591
javascript:;

Reply

sigfpe Monday, 04 May, 2009

Arnar,

I tried to avoid talking about multiple languages to make things easier to understand.

But any individual specialiser is typically written in language A, takes an input to specialise written in language B, and
outputs something in language C. (Or directly outputs executables rather than source.) It's now kinda fun to work out
schemes for using combinations of specialisers to bootstrap specialisers from one language to another.

You can also consider specialisers that only work with a subset of a language - for example a subset just big enough
to write a specialiser. Or specialisers good enough to specialise an embedded DSL if not the full host language.

Reply

Doug Merritt Monday, 04 May, 2009

It seems to me that there is a clear connection with reflective towers, e.g. as discussed in extraordinary detail in Lisp
in Small Pieces, but I don't recall whether the latter (or anything else) examines the connection.

As with reflective towers, mathematically it seems clear that the most natural theory actually does have not just a
fourth projection, but actually an infinite number of projections (although one could axiomatically chop it short to suit
one's tastes), but the connection of each level to some understandable concrete concepts seems questionable --
perhaps not unlike the general theory of N-Categories?

That thought is not identical to Martijn's, but is similar in flavor.

Reply

syoyo Tuesday, 05 May, 2009

FYI, I'm been working writing RenderMan Shader Language compiler in Haskell with specialization facility.

I believe shader specialization is killer application of Futamura projection.

See my demo if you are interested in this field.

http://vimeo.com/3294472

Reply

Dave Tuesday, 05 May, 2009

Handwaving wildly, it seems like there ought to be a topological problem here: if one curries f(stat,dyn) to f(stat)(dyn),
then a specializer ought to produce f_stat(dyn). This is like saying that one can, instead of traversing two sides of a
triangle, wind up at the same place by traversing the third. In some cases we can smoothly map a path from the first
two sides to the third, in other cases -- particularly when the implementation is hardware based -- we run into an
exponential blowup. Could it be useful to classify these situations into the presence or absence of the triangle "face"?

Reply

javascript:;
https://www.blogger.com/profile/08096190433222340957
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241455200000&m=1#c5895788848252913008
javascript:;
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241490960000&m=1#c1663733189943207564
javascript:;
https://www.blogger.com/profile/15167076070732369617
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241516700000&m=1#c5621767056775032319
javascript:;
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241533260000&m=1#c8769638162596286189
javascript:;

augustss Tuesday, 05 May, 2009

Writing a specializer that actually does something interesting when applied to itself is a really tricky. It took the DIKU
group something like 10 years to figure out how.

You can bypass some of the problems by writing cogen (the 3rd Futamura projection) by hand.

Reply

sigfpe Tuesday, 05 May, 2009

augustss,

I'd expect it to be really hard. I can see that it'd be easy to specialise many kinds of purely numerical code, say,
because you're just simplifying mathematical expressions. But specialising a piece of code that takes source code as
input, and hence specialising all of the decisions made during the process of, say, parsing and interpreting that code,
seems pretty scary to me.

Reply

augustss Tuesday, 05 May, 2009

Partial evaluators that are not to be self applied are very useful too, but they don't tickle the imagination in the same
way.

In fact, I would almost claim that most of the commercial Haskell code I've written have been partial evaluators of one
kind or another. But only one actually went by that name.

Reply

Guy Steele Wednesday, 06 May, 2009

Very nice! This blog entry is a delightful metaphorical introduction to the concepts---I love the drawings---and seems
to be technically sound. One very slight glitch: in the last two drawings, I believe that the right-hand input to the
specializer should be not a picture of a machine, but a picture of a picture of a machine. This is a subtlety that is all
too easy to gloss over.

Reply

Peter Berry Wednesday, 06 May, 2009

> {-# LANGUAGE EmptyDataDecls #-}
> data Pic a
> type Specialiser a b c = (Pic ((a,b) -> c), a) -> Pic (b -> c)
>
> specialise :: Specialiser a b c
> specialise = undefined
>
> spec_pic :: Pic (Specialiser a b c)
> spec_pic = undefined
>
> test = specialise (spec_pic, spec_pic)

https://www.blogger.com/profile/07327620522294658036
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241544840000&m=1#c4193054871836213800
javascript:;
https://www.blogger.com/profile/08096190433222340957
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241547780000&m=1#c4323264675739584770
javascript:;
https://www.blogger.com/profile/07327620522294658036
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241584620000&m=1#c5200989844702471120
javascript:;
http://research.sun.com/people/
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241627340000&m=1#c2721074210744607764
javascript:;
https://www.blogger.com/profile/08770230331776974807
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241646300000&m=1#c1025057980967444072

*Main> :t test
test :: Pic (Pic ((a, b) -> c) -> Pic (a -> Pic (b -> c)))

test is the picture of X that you get by feeding the specialiser with two pictures of itself. So X is a machine that takes a
picture of a machine - _not_ a picture of a picture of a machine.

Reply

sigfpe Wednesday, 06 May, 2009

Peter,

We can have a bit of fun with Pic. If we have a picture of an a, it tells us how to make an a. So we have a map

Pic a -> a

Now if we have an a, it's hard to make a picture of it, because it involves reverse engineering all of its internals. In
fact, the machine might be booby trapped. So we have no map, in general, a -> Pic a. But we do have a map

Pic a -> Pic (Pic a)

because if you have a complete picture of an a there's nothing hidden that prevents you fully describing that in a
higher order picture.

So Pic is very close to a comonad. In fact, it's the modal operator from the S4 logic:
http://www.cs.cmu.edu/~fp/talks/scottfest02.pdf (see p.16)

So if I wasn't feeling so stupid I could probably turn the Futamura projection into something interesting in S4.

Reply

Peter Berry Wednesday, 06 May, 2009

Guy, I see now I misread your criticism. But it's still a picture of a machine, not a picture of a picture of one, as you
can see from the type.

Dan, that's pretty interesting. Somehow I'd never thought of applying Curry-Howard to modal logic before. By 'very
close to a comonad' do you mean 'looks like a comonad but I haven't proved it yet' or 'actually isn't a comonad'? Not
that I have much of a grasp on just what a comonad is, mind.

Reply

sigfpe Thursday, 07 May, 2009

Peter,

If Pic were a comonad we'd have a function

(a -> b) -> Pic a -> Pic b

but we only have

javascript:;
https://www.blogger.com/profile/08096190433222340957
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241650260000&m=1#c362394646412338933
javascript:;
https://www.blogger.com/profile/08770230331776974807
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241670660000&m=1#c3019842509545371971
javascript:;
https://www.blogger.com/profile/08096190433222340957
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241712480000&m=1#c4574860143214659957

Pic (a -> b) -> Pic a -> Pic b

The latter corresponds to the fact that we can draw a diagram for constructing a b by showing first how to make an a
and then showing how to make a machine to transform an a into a b.

Reply

Guy Steele Thursday, 07 May, 2009

Peter Berry,

Thanks for your nice type analysis, and I think it illuminates the problem. In the sigfpe essay, the diagram under the
heading "Specialisation" indeed corresponds to your type

type Specialiser a b c = (Pic ((a,b) -> c), a) -> Pic (b -> c)

But the next diagram, under the heading "The FIrst Projection", has a different type:

type Specialiser a b c = (Pic ((a,b) -> c), Pic(a)) -> Pic (b -> c)

and this is the type that I relied on when making my original criticism. So the best I can say now is that there does
seem to be a slight type inconsistency somewhere.

Reply

Anonymous Sunday, 10 May, 2009

I had to follow to the Wikipedia link before I read it properly and noticed it was Doctor Futamura rather than Doctor
Futurama.I feel somewhat disappointed.

Reply

Zachary Vance Tuesday, 09 February, 2010

Dear Guy,
In the second diagram, under the heading "The First Projection", the type is still
type Specialiser a b c = (Pic ((a,b) -> c), a) -> Pic (b -> c)
where a = Pic(d). If you look at the top, you'll see the original machine takes a picture of a coin, which makes sense
for coins but has no "program as data" connotation, possibly the source of your confusion. The diagrams are quite
consistent.

Reply

solrize Wednesday, 14 July, 2010

The Google Books link to "Vicious Circles" is broken. Could you post the title and author info? Thanks.

Reply

Bobby Jameson Saturday, 07 August, 2010

javascript:;
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241750820000&m=1#c2525818988190000294
javascript:;
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1241982180000&m=1#c8052231908906979432
javascript:;
https://www.blogger.com/profile/06055515765180704709
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1265773104687&m=1#c6451492699616010974
javascript:;
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1279132709788&m=1#c1847769941303983262
javascript:;
http://www.slotmachinesecretsrevealed.com/
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1281166267990&m=1#c791026377811282660

‹ ›Home

View web version

To leave a comment, click the button below to sign in with Google.

SIGN IN WITH GOOGLE

It looks like you guys are building some type of slot machine or something. I'm not sure I understand, is that what it is,
a slot machine???

Reply

Sonny O. Wednesday, 02 February, 2011

I'm sorry to say but I believe I'm one of those non-programmers whom you failed to explain the three projections to a
level of understanding to. It did make my brain hurt a bit but I'll have to give you props for the effort.

I do understand the GIGO (Garbage In Garbage Out) process but any internal processes prior to output is still a bit of
a blur for me. Even trying to picture it out as a scene in the game incredible machines didn't do the trick.

In any case, I will keep reading your blog for further comment exchange and resources until I get this. Thanks.

Reply

sigfpe

View my complete profile

About Me

Powered by Blogger.

http://blog.sigfpe.com/2009/05/trace-diagrams-with-monads.html?m=1
http://blog.sigfpe.com/2009/04/faster-than-speeding-photon.html?m=1
http://blog.sigfpe.com/?m=1
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?m=0
javascript:;
http://www.sanyo-lcd.com/whats-new-my-z4000-sanyo-lcd-projector-review
http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html?showComment=1296703324687&m=1#c492349564433039780
javascript:;
https://www.blogger.com/profile/08096190433222340957
https://www.blogger.com/profile/08096190433222340957
https://www.blogger.com/

