
Simple declarative schema migration for SQLite

By David Rõthlisberger (https://david.rothlis.net) and William Manley

(https://blog.williammanley.net).

Published 30 Apr 2022.

At my company (https://stb-tester.com) we use a small SQLite database. We define the
schema in a single file with SQL CREATE TABLE statements. If we add tables,
columns, or indexes, our application will create them automatically the next time it
starts up.

This is superior to explicit database migration scripts:

We (usually) don’t need to write the database migration SQL manually.
This brings some of the benefits of schemaless databases to SQL, particularly
around speed of development / ease of experimentation.
The auto-migration code gives us some guarantees that the resulting database
schema will match our SQL file.
We can downgrade too, by dropping tables or columns (if we don’t mind losing
data). This is important for CI where switching between branches can cause the
schema to change regularly.

We’ve been using this since 2019 and it works well, though I must admit our
database is small (a dozen tables, ~40MB) and it doesn’t change that often (65
changes to our schema in those 3 years, according to git log).

How it works

We define our database schema in a single file —let’s call it schema.sql— with
normal CREATE TABLE and CREATE INDEX statements.

When our application starts up, our migrator creates a new in-memory database
and executes the schema to create a “pristine” or “desired” version of the
database:

https://david.rothlis.net/
https://david.rothlis.net/
https://blog.williammanley.net/
https://blog.williammanley.net/
https://stb-tester.com/

schema = open("schema.sql").read()

pristine = sqlite3.connect(":memory:")

pristine.executescript(schema)

We query sqlite’s internal sqlite_schema (https://www.sqlite.org/schematab.html) table to
get the tables from both the “pristine” and “actual” databases:

pristine_tables = dict(pristine.execute('''\

 SELECT name, sql FROM sqlite_schema

 WHERE type = "table" AND name != "sqlite_sequence"''').fe

tables = dict(db.execute('''\

 SELECT name, sql FROM sqlite_schema

 WHERE type = "table" AND name != "sqlite_sequence"''').fe

Then we can work out new or removed tables:

new_tables = set(pristine_tables.keys()) - set(tables.keys())

removed_tables = set(tables.keys()) - set(pristine_tables.key

The above query gives us the CREATE TABLE sql, which we can execute to create
the new tables:

sqlite> select name, sql from sqlite_schema where type = "tab

name|sql

Node|CREATE TABLE "Node"(...)

...

Similarly for indexes:

sqlite> select name, sql from sqlite_schema where type = "ind

name|sql

Node_node_id|CREATE UNIQUE INDEX Node_node_id on Node(node_id

...

To detect changes to existing tables we use PRAGMA table_info
(https://sqlite.org/pragma.html#pragma_table_info), which returns a list of the table’s

https://www.sqlite.org/schematab.html
https://sqlite.org/pragma.html#pragma_table_info
https://sqlite.org/pragma.html#pragma_table_info

columns:

sqlite> pragma table_info(Node);

cid|name|type|notnull|dflt_value|pk

0|node_oid|INTEGER|1||1

1|node_id|TEXT|1||0

...

If there are new or changed columns, we follow the 12 step procedure
(https://www.sqlite.org/lang_altertable.html#otheralter) in the SQLite documentation. In short
we create a new table, copy the data from the old table into the new table, drop the
old table, and rename the new table. This particular sequence is important to avoid
breaking foreign keys.

We use a similar technique (querying sqlite_schema and table_info) to generate an
Entity Relationship Diagram using Graphviz (https://graphviz.org/), for our
documentation.

ORM agnostic

With this technique you can define your database schema however you like. We
use CREATE TABLE statements in a single sql file, but maybe you use an ORM
that can create the database tables based on your ORM-ey code. You just need to
create a new temporary database from scratch; our technique then compares the
current database versus the new temporary database.

Limitations

The schema changes that we can make are limited to the following operations:

1. Adding a new table.
2. Adding, deleting or modifying an index.
3. Adding a column to an existing table as long as the new column can be NULL or

has a DEFAULT value specified.
4. Changing a column to remove NULL or DEFAULT as long as all values in the

database are not NULL.

https://www.sqlite.org/lang_altertable.html#otheralter
https://www.sqlite.org/lang_altertable.html#otheralter
https://graphviz.org/

5. Changing the type of a column (note that SQLite’s typing is, uh, flexible
(https://sqlite.org/flextypegood.html)).

And if you don’t mind losing data:

6. Dropping a table.
7. Dropping a column.

(For those you need to opt in by specifying allow_deletions=True.)

Our migrator doesn’t support triggers & views — not for any fundamental reason,
it’s just that we don’t use SQLite triggers & views in our application.

Our migrator may change the values of rowid (https://www.sqlite.org/rowidtable.html)

columns (which are generated internally by SQLite) because we call VACUUM
(https://www.sqlite.org/lang_vacuum.html) to re-pack the database file.

Our migrator doesn’t do data migrations (where you’re changing the format of
existing data or populating new columns based on other columns). You still need to
write those manually.

Manual migrations

In our initial design, our migrator would check the user_version
(https://www.sqlite.org/pragma.html#pragma_user_version) pragma and refuse to auto-
migrate if user_version had changed. In theory we would bump user_version in our
schema.sql file when the changes were too complex for the migrator. In practice,
we never used this; instead we write explicit SQL to bring the database into a state
that the auto-migrator will be happy with.

For example, if we have removed a table from the schema and we don’t care about
the data in it, we write DROP TABLE IF EXISTS before running the migrator. This is
idempotent so it won’t hurt if it is run again. In due course this migration can be
removed from the code, after the change has been rolled out to all the relevant
servers.

https://sqlite.org/flextypegood.html
https://sqlite.org/flextypegood.html
https://www.sqlite.org/rowidtable.html
https://www.sqlite.org/lang_vacuum.html
https://www.sqlite.org/lang_vacuum.html
https://www.sqlite.org/pragma.html#pragma_user_version
https://www.sqlite.org/pragma.html#pragma_user_version

Data migrations can be run after the auto-migrator, once the new tables & columns
are in place.

For example:

db = sqlite3.connect("mydatabase.sqlite3")

schema_sql = open("schema.sql").read()

v, = connection.execute("PRAGMA user_version").fetchone()

if v == 0:

 # Initialising database from scratch.

 with DBMigrator(db, schema_sql) as migrator:

 migrator.migrate()

elif v == 1:

 with DBMigrator(db, schema_sql) as migrator:

 # Manual migration: Drop obsolete tables so that `mig

 # doesn't complain in prod where `allow_deletions=Fal

 db.execute("DROP TABLE IF EXISTS MyObsoleteTable")

 # Now do the automatic migration:

 migrator.migrate()

 # Additional data migration to populate new "end_time

 # Note the careful WHERE clause to make this idempote

 db.execute("""\

 UPDATE Task SET end_time = :now

 WHERE result IS NOT NULL AND end_time IS NULL""",

 {"now": time.time()})

else:

 raise RuntimeError(

 f"Database is at version {v}. This version of softwar

 "only supports opening versions 0 or 1. Bailing out "

 "to avoid data loss.")

This example runs the manual & automatic migrations in the same transaction (in
case that’s important to you). DBMigrator is a Python context manager so that
we can run the last step of the 12 step procedure
(https://www.sqlite.org/lang_altertable.html#otheralter) (re-enabling foreign key constraints)
after all your manual migrations, because that step can only be run after
committing the transaction.

Continuous Integration

Our unit tests (for our product, not for this migration system specifically) create an
in-memory database from scratch each time, using something like this:

@pytest.fixture()

def tmpdb():

 return MyDatabase(sqlite3.connect(":memory:"))

Since there’s nothing to migrate from, these unit tests aren’t testing the schema
migration.

We also have some integration tests (our product is a distributed IoT-style system
so the integration tests include a real “portal” or central server and real “nodes”
running on our product’s actual hardware). These integration tests re-use a
database that persists across CI runs. Our CI might run tests from different
branches with divergent schemas, so before CI we run the migrator with
allow_deletions=True to downgrade to the schema on our “main” branch. Then the
actual migration will be exercised when our application starts up.

Implementation

Here’s the code — I extracted it from our proprietary codebase but I haven’t tested
it in isolation:

migrator.py
Unit tests

https://www.sqlite.org/lang_altertable.html#otheralter
https://www.sqlite.org/lang_altertable.html#otheralter
https://david.rothlis.net/declarative-schema-migration-for-sqlite/migrator.py
https://david.rothlis.net/declarative-schema-migration-for-sqlite/test_migrator.py

The above code is Copyright © 2019-2022 Stb-tester.com Ltd. We release it under
the MIT license.

See the code in “Manual migrations”, above, for a usage example.

Credits

Design & code by my colleague William Manley (https://blog.williammanley.net), partly
inspired by liyanchang’s comment on Hacker News (https://news.ycombinator.com/item?

id=19881330).

Related work

Migra (https://github.com/djrobstep/migra) (for Postgres), Skeema
(https://github.com/skeema/skeema) (for MySQL/MariaDB), and sqldef
(https://github.com/k0kubun/sqldef) (for MySQL, Postres, Microsoft SQL Server, and
SQLite!) are all quite similar to what I have described.

Are they ORM agnostic? I think so: they can all connect to an existing database to
dump the database’s schema to sql files, so you can create the “desired” schema
any way you want. Skeema expects you to commit the dumped sql files to your
version control, and editing them is the canonical way of changing the schema, but
I’m sure that isn’t strictly necessary.

Skeema has a (paid) GitHub integration that will automatically post a comment on
pull requests to show the generated migration, and maybe it warns about unsafe
(data losing) migrations? Sounds pretty neat.

At the time we implemented our migrator, sqldef didn’t yet support SQLite. Even
now, it isn’t clear (https://github.com/k0kubun/sqldef/blob/v0.11.50/schema/generator.go) that
slqdef implements SQLite’s 12 step procedure
(https://www.sqlite.org/lang_altertable.html#otheralter) for safely altering tables. Like our
migrator, sqldef asks the database for its own schema (select sql from
sqlite_schema where tbl_name = ?) but to detect added/removed columns sqldef
uses its own SQL parser instead of querying PRAGMA table_info (this isn’t
necessarily a bad thing, but it’s complexity that isn’t needed for our use case).

https://blog.williammanley.net/
https://news.ycombinator.com/item?id=19881330
https://news.ycombinator.com/item?id=19881330
https://github.com/djrobstep/migra
https://github.com/skeema/skeema
https://github.com/skeema/skeema
https://github.com/k0kubun/sqldef
https://github.com/k0kubun/sqldef
https://github.com/k0kubun/sqldef/blob/v0.11.50/schema/generator.go
https://www.sqlite.org/lang_altertable.html#otheralter
https://www.sqlite.org/lang_altertable.html#otheralter

sqlite-utils (https://sqlite-utils.datasette.io/en/stable/#) (from Simon Willison’s Datasette
(https://datasette.io/)) creates/modifies tables automatically based on the CSV/JSON
data that you’re importing, and it does implement SQLite’s 12 step procedure
(https://sqlite-utils.datasette.io/en/stable/python-api.html#python-api-transform) for altering
tables.

Comments

Hacker News comments on this article here (https://news.ycombinator.com/item?

id=31249823).

https://sqlite-utils.datasette.io/en/stable/#
https://datasette.io/
https://datasette.io/
https://sqlite-utils.datasette.io/en/stable/python-api.html#python-api-transform
https://sqlite-utils.datasette.io/en/stable/python-api.html#python-api-transform
https://news.ycombinator.com/item?id=31249823
https://news.ycombinator.com/item?id=31249823

