
 Devel without a Cause

HTML Whitespace is Broken

September 2, 2024

Recently, I was working on a project which required a deeper

understanding of how whitespace works in HTML. I was never a fan

of HTML's whitespace behavior before as I've been burned by it a

few times. But as I dug into it more deeply, I found myself

discovering complex design issues that I wanted to explore in a

blog post. This is partially to write down my knowledge in this

space for future reference and partially to vent about how

unnecessarily complicated it all is.

So let's discuss:

1. How whitespace actually works.

2. Why it works that way.

3. The problems many HTML tools have.

4. How it should work.

5. What we can do about it.

How HTML Whitespace Works

MDN has a great article explaining whitespace in HTML but I'll try

to break it down here. Let's start with inline elements.

https://blog.dwac.dev/
https://blog.dwac.dev/feed.xml
https://blog.dwac.dev/feed.xml
https://twitter.com/intent/tweet?text=Check%20out%3A%20%22HTML%20Whitespace%20is%20Broken%20-%20Devel%20without%20a%20Cause%22.%20https%3A%2F%2Fblog.dwac.dev%2Fposts%2Fhtml-whitespace%2F
https://twitter.com/intent/tweet?text=Check%20out%3A%20%22HTML%20Whitespace%20is%20Broken%20-%20Devel%20without%20a%20Cause%22.%20https%3A%2F%2Fblog.dwac.dev%2Fposts%2Fhtml-whitespace%2F
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Whitespace

Inline Elements

HTML is whitespace-sensitive in that elements will render

differently based on whether or not whitespace exists between

them. In these two examples, if a space is present between the two

links, then that space is rendered in the output.

This makes some amount of sense to me. The difference between 1.

and 2. is clear in the code, obviously the developer intentionally put

a space in 2. and it follows that 1. would not have any space

between its links.

Beyond single spaces, HTML is subject to whitespace "collapsing",

where multiple spaces are "collapsed" into a single space. This

means adding additional spaces has no effect. It's exactly the same

as having one space.

Example 1: No whitespace.

FirstSecond

FirstSecond

Example 2: Single space.

First Second

First Second

Newlines and tabs are also treated identically and collapsed into

spaces.

The space between the tags is rendered as an independent text

node, meaning it does not inherit the styles for either of the <a>
tags. It does not include an underscore and clicking the whitespace

does not trigger either link. Given that the space in HTML is not

within either <a> tag, that seems pretty reasonable to me.

But let's keep experimenting. If we put this inside a tag,

then any leading and trailing whitespace is not preserved.

Example 3: Lots of spaces.

First Second

First Second

Example 4: Newline.

First

Second

First Second

Even though there are many spaces before the first <a>, they do

not render to the user. This is because whitespace at the start of a

rendering context (basically whitespace before the first line of a

block) is removed completely.

Typically, spaces which are visible to the user are referred to as

significant, while spaces which are not rendered are considered

insignificant. For the above example, the newline and indentation

between the links are significant because they will be collapsed to a

single space and rendered. The indentation before the first link and

trailing newline after the second link are insignificant and not

displayed to the user.

This also applies to whitespace inside a tag. Consider these

examples:

Example 5: Indented.

 First

 Second

First Second

In 7., we can see that the space between "World" and "!" is preserved

and the space is underscored with the rest of the link. If you click

that space precisely enough you'll actually follow the link.

In fact 7., shows even more collapsing. There are actually two

spaces between "Hello," and "World", one outside the <a> tag and

the other inside it. You might expect this to render two spaces, the

latter of which is underlined because it is a part of the link.

However the browser actually collapses both spaces together and

only displays one. The begs the question: Which space is

preserved? How does the browser decide?

Example 6: Basic link.

Hello, World!

Hello, World!

Example 7: Spaced link.

Hello, World !

Hello, World !

Example 8. Very spacey link.

Hello, World !

Hello, World !

Let's test this out by swapping the ordering:

Here we see that the space is underscored, so the space was again

given to the preceding text node.

This also highlights the most common foot gun I've seen with

HTML whitespace: links with extra spaces. Consider this example:

Since the link is on its own line, the text ends with a newline

character before the . This means the rendered output places

the space within the link itself, so the underscore trails one

character further than you might expect.

Example 9: Link before text.

Hello, World!

Hello, World!

Example 10: Long link text.

Hello,

 here is some long link text that goes on its o
 please take a look at it!

Hello, here is some long link text that goes on its own line please
take a look at it!

There's also a space after the , meaning this falls into the case

where there are multiple spaces across two elements. As a result,

the space goes to the preceding node which is the link in this case.

The solution here is to remove the newline at the end of the <a> tag

by reformatting it, line length limits be dammed.

Your formatter might not like this solution, but we'll get to that

later.

Block Elements

All of the above applies to inline HTML elements.

Block elements are similar, but preserve a little less whitespace. As

mentioned earlier about inline elements, any spaces at the start or

end of a line are dropped. Block elements work similarly. Any

whitespace in a block formatting context becomes its own block,

except that whitespace-only blocks are then dropped entirely.

Practically speaking, this means that any spaces around blocks are

effectively ignored.

Example 11: Single-line link.

Hello,
here is some long link text that goes

please take a look at it!

Hello, here is some long link text that goes on its own line please
take a look at it!

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_display/Block_formatting_context

Recall that for inline elements, a space between them is significant

and gets included in the former element.

For block elements, there's actually no difference between these

examples because all the whitespace differences are ignored and

newlines are placed between the blocks. Example 12. does not

actually contain any whitespace, yet the two <div> tags are

presented as if there is a newline between them.

Example 12: Block elements without whitespace.

<div>Hello</div><div>World</div>

Hello
World

Example 13: Block elements with whitespace.

<div>Hello</div> <div>World</div>

Hello
World

Example 14: Block elements with newline.

<div>Hello</div>
<div>World</div>

Hello
World

CSS

Now that you understand how block and inline elements behave,

let's do a quick pop quiz, how do you expect the following to

render?

You might intuitively think, "Well <aside> is a block element, so it

should follow the same rules as <div>. Therefore this will render

exactly like example 12., and there's a newline between them."

That's very well-reasoned of you, and you are correct... most of the

time... This is actually a trick question. <aside> is natively a block

element, but it doesn't have to be. Therefore you can actually

render different spacing based on how you style the element.

Example 15: <aside> without whitespace.

<aside>Hello</aside><aside>World</aside>

Example 16: Block <aside>.

<style>aside { display: 'block'; }</style>
<aside>Hello</aside><aside>World</aside>

Hello
World

The same HTML can actually lead to different whitespace behavior.

That might not sound too bad. After all, this is exactly the layout

difference between block and inline. However it actually

changes the fundamental text content displayed to the user.

Example 16. displays two strings, "Hello" and "World". While 17.

displays a single string "HelloWorld". There's a semantic difference

between those two options, not just a styling distinction.

You can actually observe this distinction in JavaScript through

textContent and innerText on a parent element. The former

joins the strings together with no spacing in both cases.

> parentOfBlockAsides.textContent
'HelloWorld'

> parentOfInlineAsides.textContent
'HelloWorld'

However innerText adds a newline for the block elements only:

Example 17: Inline <aside>.

<style>aside { display: 'inline'; }</style>
<aside>Hello</aside><aside>World</aside>

HelloWorld

https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/innerText

> parentOfBlockAsides.innerText
'Hello\nWorld'

> parentOfInlineAsides.innerText
'HelloWorld'

Per MDN, innerText is "aware of styling" so it can tell the

difference between these two examples in a way textContent
cannot.

You can even hear the difference with text-to-speech tools!

Windows Narrator on Chrome treats block elements as different

text fields while inline elements are joined into a single word.

Here I put the word "Refrigerator" split across multiple <aside>
tags. The first attempt uses the default display: block; while

the second is display: inline;.

https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent#differences_from_innertext

Narrator treats the first attempt as four different words. It

implicitly converts "fri" to "Friday" (assuming certain semantics on

the text) and can't pronounce "ger" at all, choosing to spell it out

instead as "g-e-r".

The second attempt correctly speaks "Refrigerator" even though it

has identical DOM structure to the first attempt. The only

difference is the display property. This tells us two things:

First, whitespace handling of HTML content can be controlled

purely through CSS. This is also interesting because it means that

whitespace handling is not done by the HTML parser. The parser

must retain all spaces because it's actually the CSS layer which

decides whether or not those spaces are significant.

Second, the actual content of a web page can be manipulated by

CSS. The page should contain either "Refrigerator" or "Re-fri-ger-

ator", regardless of the CSS applied. The presentation layer of CSS

should not get to decide which of those two interpretations is

correct, that's HTML's job. This also implies that search engines

may index different textual content based whether they process a

page's CSS styling, which really bulldozes any idea of separation of

concerns between HTML and CSS.

Preformatted Text

"But wait!" I hear you say. "If you don't like HTML spacing, just use

the <pre> tag!"

Yes, that is a valid point. HTML does have a <pre> tag for

"preformatted" text which automatically preserves all whitespace.

No whitespace collapsing occurs and all of it is considered

significant... except when it isn't, thanks HTML! There are actually

two insignificant spaces here:

1. The first newline immediately following the initial <pre>
(<pre>\nHello...).

2. The last newline immediately preceding the final </pre> (than
the rest!\n</pre>).

Neither of these newlines are rendered. There's no blank line at the

start or end of the rendered result. Surprisingly, if we check

textContent we don't see the first newline, but we do see the

second newline, even though it's not rendered.

Example 18: Preformatted text.

<pre>

Hello world
I am preformatted text, which is interesti

 This line is indented more than the rest!
</pre>

Hello world

I am preformatted text, which is interest

 This line is indented more than the rest!

> preElement.textContent
'Hello world\n...than the rest!\n'

This detail hints at even more nuanced behavior, as whitespace at

the start of a <pre> tag is treated differently from whitespace at

the end.

Writing this out directly, the source text looks like:

\n\nHello world\n\n

Example 19: Preformatted text with leading / trailing
whitespace.

<pre>

Hello world

</pre>

Hello world

Here, you'll notice the two newline characters at the start are

dropped and not rendered at all. However, only one newline

character at the end is dropped, and we end up rendering an extra

line. So all newlines at the start of a <pre> tag are dropped, but

only the last newline at the end is dropped.

If we add spaces between the <pre> and </pre> tags and their

nearest newlines... (I'm using an underscore to make this visible).

Now we get the empty lines at the start and end of the block. This

means <pre> tags treat newlines distinctly from other spaces, and

those newlines must be the first or last characters of the text.

I can kind of see where the spec authors were going here. Usually if

you're putting a <pre> tag on the page, you're probably going to

put a newline before the content like so:

Example 20: Preformatted text with leading/trailing spaces.

<pre>_

Hello world
_</pre>

Hello world

<pre>
Some preformatted text

which is multiple lines.
</pre>

You're probably not going to do:

<pre>Some preformatted text

which is multiple lines.</pre>

even though that would be more accurate when it comes to

whitespace handling. The main takeaway is that even <pre> isn't as

straightforward as you might have expected, despite that being

kind of the whole point of the tag. Not only that, but up until now

spaces and newlines have used the same collapsing behavior. This

shows us that newlines and spaces can sometimes be treated

distinctly from each other.

<pre> is also just generally unergonomic. While the whitespace

behavior is definitely more intuitive, you can't indent it at all

without affecting its content. Compare these two examples:

Example 21: Indented <pre> tag.

<pre>
 Hello, World!

</pre>

 Hello, World!

Example 22: Double indented <pre> tag.

<div>
 <pre>

 Hello, World!
 </pre>

</div>

 Hello, World!

These both feel like they should contain the same text "Hello,

World!" and that's clearly the developer's intent. However 21. is

preceded by 4 spaces while 22. is preceded by 8 spaces and trailed

with a newline and another 4 spaces. This is especially tricky

because the indentation causes spaces to come after the trailing

newline, so the </pre> collapsing of a final newline doesn't apply

because it's not the last character. Therefore, we end up with an

extra blank line in the output.

One other challenge is that <pre> applies its whitespace rules to

the entire element, which can be much broader than really

necessary. Like the links with trailing spaces earlier, sometimes the

problem is just a single space. If you fix that problem by using a

<pre> tag, you're likely just creating more problems for all the

other spaces in the text which were previously rendering just fine.

So while <pre> does solve a number of whitespace issues I've

described, it causes a whole separate set of developer experience

(DX) issues which make it harder and less ergonomic to use

correctly.

white-space

The white-space CSS property adds even more complexity to

this. It supports white-space: pre; which can basically opt any

element into the <pre> tag's parsing rules. It also supports pre-

line, pre-wrap and a few other possible options to further

configure the behavior for specific use cases.

https://developer.mozilla.org/en-US/docs/Web/CSS/white-space

As I mentioned earlier, whitespace processing is defined by CSS

rules, not the HTML parser so the standard which specifies this

behavior is actually maintained by the CSS working group and

primarily focuses on the behavior of the white-space property.

Between block elements, inline elements, and <pre> tags I think

I've done a decent job justifying why HTML whitespace is confusing.

However if you still don't believe me, I'll also mention that flexbox

forces block rendering on its children and inline-block
elements are also sensitive to minor whitespace changes.

So if this is all so complicated and <pre> isn't the right solution,

what other options are there?

We've all been there. Two elements are right next to each other and

you need just a little spacing between them. What do you do?

If you've never understood what this actually is, is an

HTML entity representing a "no-break space". Specifically, it's a

space which the browser will never line wrap on.

Hello World will never be split up into Hello and World

on different lines, no matter how narrow the viewport gets.

https://drafts.csswg.org/css-text/
https://drafts.csswg.org/css-text/
https://developer.mozilla.org/en-US/docs/Glossary/Entity
https://unicode-explorer.com/c/00A0

This is a useful, but frequently misused tool. If you need a space

between two elements, especially elements in an inline text context

where devs frequently reach for , you probably don't want

the non-breaking behavior. If the entity appears outside of a text

context, such as between two blocks, then the non-breaking

behavior doesn't even apply and has no effect.

Instead, I suspect what devs really want from is its non-

collapsible behavior. Multiple characters are not merged

together and they can start or end lines.

 is not considered whitespace like newlines, tabs, or general

spaces so collapsing rules treat it like any other text.

This sounds nice but comes with additional baggage. Beyond the

non-breaking behavior, always takes up exactly one space-

worth of width and this is never reduced. Except there is one

extremely common scenario where spaces are eliminated, and

that's line wrapping.

Example 23: .

<div>Hello, World</di
<div> </div>

<div> test</div>

Hello, World

 test

 is a non-breaking space, so you'd think it never line wraps.

Except as I mentioned, the "non-breaking" behavior has no effect

when used outside of a text context. So if you use to space

out two blocks, you've created a line wrapping problem. Check out

this example of two red boxes with a blue between them:

The ideal behavior would only show the space between the two

squares when they are adjacent to each other, but is not

able to support that and always takes up space, even if the boxes

are already separated due to line wrapping. I suspect most usages

of actually have line wrapping bugs which developers don't

notice because they don't go out of their way to test this particular

behavior.

Unfortunately there's no great alternative to which would

line wrap in the correct fashion. sounds like the right entity,

but that gets collapsed like a regular space, so it doesn't help here

either.

So what's the correct solution for spacing out two elements? Well

it's probably best to do this in CSS with margin, padding, or any of

the other thousand properties which introduce spacing and fail to

center elements. If you really need to, a <pre> tag or the white-
space property is probably the best way to have maximum control

over your spacing behavior. However, I honestly can't blame you if

you still end up reaching for . I don't have a great

alternative beyond "do it in CSS", which just isn't a drop-in solution.

How Did We Get Here?

Why exactly does HTML work this way? Why did we make this

language so complicated?

I think the core problem here is that all whitespace in HTML is

ambiguous. Specifically, it is ambiguous with regard to the

developer's intent. For any given space, did the developer mean for

it to be displayed to the user or did they just want to keep their

code under the line length limit? It's impossible for the browser to

know.

To address this, the designers of HTML tried to come up with a set

of rules which would roughly map the HTML code they wanted to

write to the rendered output they wanted to create. So you, as a

developer, have a UI in your head and write out the HTML to

display it, and usually the whitespace "just works". Honestly, I'm

kind of amazed the browser is as consistently correct as it is.

But even that isn't 100% correct. Sometimes the developer doesn't

expect whitespace to behave the way it does and leads to

complicated, hard to understand bugs. <pre> tags simplify things

and are intended for use cases where whitespace is significant and

needs to be retained, but it makes authoring those strings in HTML

really awkward and overly precise.

Developers are forced to choose between the default syntax that

usually works and is convenient to write or a <pre> syntax which

can very precisely express the spacing they want but is incredibly

awkward and inconvenient to work with.

Contrast this with basically any other programming language

where user visible strings are syntactically distinct from general

whitespace:

function sayHello(): string {

 return 'Hello, World!' +
 ' I\'m some text without a newline.' +

 ' and I\'m some text with a trailing newline
}

All the spaces and newlines are explicit. Everything within the

quotes is intended for the end-user and everything outside the

quotes is intended for the developer. This format has its own

problems, multiline text can get very awkward for example. But it's

at least unambiguous whether any given space is significant to the

end user or insignificant and intended only for the developer.

Just imagine working in a language where text didn't need to be

quoted:

function sayHello(): string {
 return Hello, World! +
 I'm some text without a newline. +

 and I'm some text with a trailing newline.\
}

That sounds awful and I have no idea how it would work. Except

you don't need to imagine such a situation, because you already

write HTML which works exactly like this, and despite writing a

whole blog post on the matter, I have no idea how that works

either!

Also, if you believe HTML's syntax is justified because it is intended

to represent documents and occasionally authored by non-

developers, I just want to say: No it isn't.

HTML Tooling

Let's zoom out from the browser to talk about the developer writing

HTML and the tools which help them succeed. Any tool which

processes HTML needs to understand these whitespace semantics,

so let's look at just three: automated formatting, Content

Management Systems, and minification.

Automated Formatting

For as long as we've had code, we've had arguments about the best

way to write it. Everyone's got an opinion and all of them except

mine are wrong. So we use tools which automatically format

everyone's code into a single, consistent, agreed-upon format.

Sounds great.

The problem with this is that formatting regularly changes

whitespace. A long element can be broken up into multiple lines:

<!-- Before -->

<div class="cool colorful bright awesome">Here is so

<!-- After -->
<div class="cool colorful bright awesome">

 Here is some long text.
</div>

Anything affecting indenting can also cause line breaks. For

example, consider adding a wrapper <div>.

<!-- Before -->
<div>Here is some long text saying important stuff.<

<!-- After -->

<div class="wrapper">
 <!-- Now it's over the length limit and gets wra

 <div>
 Here is some long text saying important stuf

 </div>
</div>

These formatting changes are intended to be no-ops. They make

my life easier as a developer, but should never change significant

whitespace for the user. Except they do change significant

whitespace because they introduce leading and trailing spaces.

Consider:

In this case we have text with a link in the middle. But if this

exceeds the line length limit, formatting the text can introduce line

breaks like:

Example 24. One-line link.

Check out my web site and read my

Check out my web site and read my blog!

Now we have that overextended underline again, all because of a

single formatting change!

Prettier actually has an option for this called --html-

whitespace-sensitivity. Setting this to ignore will allow the

above change, so the formatted code looks great, but may break

your UI. strict will avoid introducing a significant whitespace

change so your UI is safe, but leads to truly "pretty" HTML code

like:

Check out my

<a href="#"
 >web site
and read my blog!

25. Link with overextended underline.

Check out my

 web site

and read my blog!

Check out my web site and read my blog!

https://prettier.io/
https://prettier.io/docs/en/options.html#html-whitespace-sensitivity
https://prettier.io/docs/en/options.html#html-whitespace-sensitivity

In strict mode, Prettier can't introduce a newline between <a> and

web because that could change the rendered output. Instead, it has

to put the newline inside the <a> start tag since that's the only

location it can add insignificant whitespace. Same for the and

the following and.

Prettier also has an --html-whitespace-sensitivity css
option which tells it to "Respect the default value of CSS display

property." Hopefully after reading this post you should know what

that means! Given a <div> tag, it can format with the ignore

behavior because leading and trailing whitespace aren't significant

in block rendering contexts. tags will use strict behavior

because the leading and trailing whitespace is significant. This

makes a lot of sense as a useful middle ground between ignore

and strict.

But after reading this post you should also know that's not entirely

accurate and breaks if you do div { display: inline; }.

Prettier doesn't know anything about your CSS so it can only infer

the default display for a given tag, it can't know the actual

display value used at runtime.

No shame on Prettier here by the way. I can't blame the tool for

formatting HTML like this. The css mode is actually a very useful

middle ground for getting the nicer ignore formatting in at least

most of the cases where it won't have any negative effects while still

using strict where it's likely to be important.

Again, the real problem here is that HTML whitespace is ambiguous

and can't tell that Prettier wants to insert whitespace for the

developer's benefit without affecting the rendered output. The fact

that you can't know the actual whitespace behavior without

knowing the CSS display and white-space properties is just the

cherry on top that cements HTML formatting as a fundamentally

unsolvable problem.

Content Management Systems

Many hands are involved in developing and shipping a web page

from scratch to its end users. Web developers, designers, product

managers, and so much more participate in various parts of the

process. As a result, the idea of a single individual writing an entire

web page from scratch in a *.html file is relatively rare in the year

2024.

A very common scenario is for a web developer to focus on the

"HTML parts" of the page while the marketing, product, or

localization teams are focused on the raw text content inside a

separate content management system (CMS). An e-commerce site

selling shoes probably does not want to file a bug with the

developers every time they need to update the marketing copy for

how the shoes will make you a faster runner in a not-at-all-legally-

binding manner. As a result, modern HTML code looks less like

Fast shoes. and more like:

${cms.getString('shoes.description')}

That sounds straightforward, but pulls on a whole host of

whitespace issues. The content is displayed in an HTML context,

meaning HTML's whitespace rules still apply, however the author of

the text likely doesn't know that.

For example, if the text starts or ends with whitespace, that

whitespace will be naturally placed into the and affect

spacing with adjacent elements.

Another possibility is if the marketing team is led by one of those

people who insists on all sentences ending with two spaces after

the period. Those two spaces will be collapsed into a single space,

and lead to a very upset marketing team which directly leads to a

mildly annoyed development team.

Those use cases are possible, but not exactly common and likely

something most developers can just ignore. However you have to

imagine that the marketing team is looking at a text field like this:

Marketing is interpreting the content as plain text, but that's not

how HTML works. As a result, they end up looking at a completely

borked disclaimer:

These shoes will make you the fastest* runner around! * Not
legally binding.

You'd think the CMS should be able to solve this problem, but it

really can't. There's two newlines between around! and * Not, but

there's no trivial replacement which will prevent them from being

collapsed into a single space. The only viable option here is to

render all text as <pre>, which is a very heavy-handed solution

and forces all whitespace to be retained when likely only some of it

actually mattered. For example, the newline between you and the
is likely just the author avoiding a horizontal scrollbar in the text

area, not a hard line break which end users should see.

Realistically, both the CMS and the individual writing this copy

need some understanding of HTML's whitespace collapsing rules

which will be applied to it.

One other negative effect is that it becomes difficult to reuse text

content between multiple frontends. For example, if the same

shoes are displayed in a native Android or iOS app which don't

have the same whitespace collapsing behavior, they will render the

same text differently. This makes it very difficult to ensure that the

same text is actually rendered consistently and implicitly couples

any text rendered to HTML to the whitespace collapsing rules of

that environment, even though the raw text itself should be

independently usable in any frontend.

Minification

The same problems exist for HTML minifiers: tools which remove

unnecessary content from web pages to reduce file size. Multiple

spaces are equivalent to single spaces, so they can pretty easily

reduce

<div>

 Hello World
</div>

down to just

<div> Hello World </div>

But they need to retain those leading and trailing spaces for all the

same reasons as mentioned above. HTML minifiers can't know for

certain what elements will render in which kind of context and

exactly what the whitespace behavior will be. Therefore they need

to retain a bunch of spaces which likely don't matter to make sure

they retain the one space which does matter and accept a larger

output file size, penalizing all users of the page.

How Could we Fix This?

Since this is all so complicated and involved, it would be great to fix

HTML so all these whitespace problems go away. Is that possible?

What would it look like?

I don't have a perfect solution in mind, but I do have some

thoughts. As I mentioned earlier, the root problem is that

whitespace in HTML is ambiguous: does a space exist to support

the developer authoring their HTML code, or to display something

reasonable to the end user? That question is unanswerable and is

the core problem we should fix.

The best way to do that is to change HTML syntax such that

significant whitespace is syntactically distinct from insignificant

whitespace. The obvious approach is to do this just like every other

programming language, quote your strings!

<div>

 "Hello, World! My name is Devel and I've got a b
 " to pick with HTML's whitespace behavior. It's"

 " super confusing and no one understands it!"
</div>

I see your disgusted reaction and honestly, I kinda get it. I don't

think this looks very good either and I wouldn't exactly want to

write it. It's not particularly elegant and I hate the leading spaces

necessary on all but the first line - so inconsistent.

In this proposed syntax, we at least have implicit concatenation like

Python so you don't need + signs everywhere. The idea is that all

spaces inside the quotes are significant and retained for the user

while all spaces outside the quotes are insignificant and used solely

for the developer. Whitespace characters like tabs are allowed and

preserved when used within quotes. Newlines are banned by

default as it would be way too easy to forget a closing quote and

introduce unintended significant spacing. Therefore, a quoted

newline is a syntax error. An &lf; HTML entity would allow

newlines to be directly specified or you could use a triple quote

syntax to define a multi-line string.

<div>
 """

 Here is a newline.
 And another newline.

 One more for fun.
 """

</div>

Lots of languages have triple quote syntax like this and my

suggestion is to follow C#'s example by making this "indentation-

aware". The opening and closing """ tokens need to be the last /

first tokens on their respective lines and the text content between

them must be indented to match. Therefore the string above is

identical to:

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/raw-string

Here is a newline.\nAnd another newline.\nOne more f

This formats nicely while still allowing precise whitespace to be

added where it is needed.

Aside from adding quotes there's a couple other changes which

need to be made:

1. Any text outside of a quoted string is a syntax error.

Exactly how it renders is up to the browser, I really don't

care what the fallback behavior is given that browsers tend

not to throw errors on bad HTML.

The main point is that any tool is free to treat unquoted text

as a syntax error along the lines of <div >.

2. white-space needs to be removed/reworked to always use

the standard whitespace behavior.

It can still control line wrapping and other presentational

aspects, it's just the raw text content which should be

consistent across all options.

This reduces the dependency on CSS to understand how

HTML text is parsed.

3. <pre> tags should be removed.

All text is preformatted (inside quotes), so having a special

tag is no longer needed.

Formatting arbitrary user input into a quoted string is not

meaningfully harder than HTML escaping the string already

is today, so there's no value in keeping <pre> tags around.

You could keep this as a backwards compatibility feature

which is an exception to the "no unquoted strings" rule, but

a purist implementation of this proposal would remove it

entirely.

Would this solve the problem? Since whitespace is no longer

ambiguous, we don't need whitespace collapsing anymore.

Whitespace outside the quotes is removed altogether, while

whitespace inside the quotes is preserved. No collapsing needed!

Developers can add multiple spaces without needing :

<!-- Just works! Indentation is correctly ignored, b
spacing between the words is retained. -->

 "Hello, World!"

Prettier and other formatters can adjust the developer side of the

whitespace as much as they want and even join/split the string

literals to move them across lines without changing the rendered

output.

<div class="wrapper">
 <div class="container">

 <div id="marketing-made-me-add-this">
 <!-- Reformatted text to be shorter. -->

 "Hello, World! My name is Devel and I've
 " got a bone to pick with HTML's whitesp

 " behavior.\nIt's super confusing and no
 " one understands how it works!"

 </div>
 </div>

</div>

Content management systems can be greatly simplified as well

since there's no whitespace behavior to understand or preserve.

Whatever text marketing gives just gets wrapped in quotes and

either replaces \n with &lf; or uses triple quotes. This way it

outputs exactly the way marketing intended.

<div>

 """
 These shoes will make you the fastest* runner ar

 * Not legally binding.

 """
</div>

Minifiers also can just drop all the whitespace outside the quotes,

then retain and join everything in the quotes together into a single

line:

<!-- Before -->
<div>

 "Hello"
 " World"

</div>

<!-- After -->
<div>"Hello World"</div>

Unfortunately this doesn't quite solve the Narrator issue discussed

earlier. Two strings still need to be treated distinctly in a block

formatting context, while strings would be implicitly joined in an

inline formatting context.

You need inline elements to join together so it's possible to style

and control parts of words. For example, adding emphasis to only

part of a word.

Example 26: Quoted block vs inline.

<div>"Re"</div>
<div>"fri"</div>

<div>"ger"</div>
<div>"ator"</div>

"Re"

"fri"
"ger"

"ator"

Re
fri
ger
ator

Refrigerator

Example 27: Emphasized part of word.

"in""conceivable!"

inconceivable!

I don't see a good solution to that without completely reworking

HTML's rendering model such that every tag has a statically-

knowable formatting context, which is a much more complicated

change to make.

DX Impact

I get that lot of developers would probably push back on adding

quotes to everything because of the negative developer experience

(DX) impact. To preempt some of those arguments, I'll remind you

of a few points I've hopefully made clear by now:

1. Today's confusing whitespace rules is its own DX problem.

This proposal eliminates that problem and means you never

have to deal with a bad link underlines again.

2. HTML tooling becomes more stable.

It is no longer possible for source formatting to affect

behavior.

Less fighting with your formatter or debugging weird issues,

more time solving real problems.

3. HTML already breaks the rules of common text formatting.

The idea that you can write HTML today by just typing the

text you want is a lie.

4. Every other language already works this way.

Adding quotes would not suddenly make HTML

unreasonably burdensome to write.

Two more characters per element is not going to break your

keyboard.

An alternative approach could use whitespace control characters

like Nunjuck's implementation to achieve a different solution to this

problem, however I think that actually leads to an overall worse DX.

Ship It?

Since it seems to solve all the problems described, can we ship this?

Unfortunately no.

Shipping a breaking change of this magnitude to HTML would be

functionally impossible and go against many of the core principles

of the open web. The best you could do is introduce a new HTML

parsing option which web pages could opt-in to along the lines of

<!DOCTYPE html6>. Alternatively, you can treat this as an entirely

DX problem and invent a new "quoted HTML" file format called

*.qhtml with tooling to convert it to standard HTML. Even then,

the ecosystem effects of this would be incredibly complicated and

end up becoming a solution more painful than the problem it's

solving.

So what could we ship?

Non-Collapsible Whitespace

The one fix I can think of is to find a drop-in replacement for

 . If developers want a non-collapsible space which does not

come with the baggage of non-breaking and forced-width behavior,

then we can come up with a new entity which meets those needs.

https://mozilla.github.io/nunjucks/templating.html#whitespace-control

My suggestion: Add a new, named HTML entity (&ncsp;) as a

regular space which does not get collapsed.

This would take on the non-collapsible benefits of , while

dropping the non-breaking and forced-width behavior which leads

to line wrapping issues. When you "just want to add a space",

&ncsp; is likely closer to what you actually want and look better

when line wrapped.

Given the layering of the HTML parser and CSS today, I suspect

this would actually require an entirely new Unicode character

representing a "non-collapsible space", distinct from the existing

space character. Except Unicode is used in more than just HTML.

In theory, other text rendering engines may do some form of

whitespace collapsing and a non-collapsible space might be useful

in some of those contexts, but I can see some push back to adding a

new character specifically to solve an HTML rendering bug.

I filed an issue with the CSS working group to discuss adding an

&ncsp; entity. Please share your own thoughts on this particular

idea.

Practical Advice

https://github.com/w3c/csswg-drafts/issues/10821

Given that we can't "fix" HTML, what can we do? Understanding the

actual whitespace behavior of HTML goes a long way, but as you've

probably figured out, it's surprisingly complicated and I don't think

it really scales to expect everyone who writes HTML to fully

understand this, nor would I expect a typical code reviewer to spot

whitespace bugs looking only at HTML code. Fortunately, HTML

whitespace does usually work and we can often rely on that, it's

mainly about minimizing edge case behavior where you need to

look up a blog post like this. Rather than preventing unexpected

collapsing behavior, we can mitigate the issue to be less of a

problem in practice. To that end, I have a few suggestions, all of

which use the term "Avoid" rather than "Never" since they are

focused more on mitigation than prevention.

Avoid Leading and Trailing Whitespace in Links

First, avoid leading and trailing whitespace in <a> tags or any other

underlined text.

<div>
 Here is some interesting text with
 a link that exceeds the line length

 but I don't care.
</div>

In my experience, links are by far the biggest challenges with

whitespace given that they are underlined by default and it's a

common style. While spacing may be incorrect in many other

situations, the underline is usually where it becomes a noticeable

problem that needs to be fixed.

As long as <a> tags are written with no leading or trailing

whitespace, this isn't an issue and your underlines will always be

correct. It does mean that in some situations you might have to

exceed the line length limit, and potentially fight with your

formatter (don't use --html-whitespace-sensitivity
ignore), but I think it's worth it given how common of a foot gun

this particular use case is.

Avoid Changing Layout Behavior with display

Second, avoid changing display to a different layout behavior. If

you want a display: block; element, pick a tag which uses

display: block; by default. This should reduce the possibility of

your whitespace behavior being dependent on CSS invisible to a

formatter, however it might be difficult when you need a specific

semantic tag. Take for example, if you need an inline <aside> tag.

There are two ways to do this:

1. Add a second tag so the one containing the text uses the correct

display value by default, independent of the semantic

<aside> tag wrapping it.

<aside>

 My text content.

</aside>

2. Pick a tag with the display behavior you want by default

(<div> or), and then use role to switch it to the

semantic element you want. There might be other accessibility

implications to this though.

 My text content.

Both of these approaches work with the --html-whitespace-

sensitivity css option and avoid a CSS dependency just to

understand the text displayed.

Technically the same guidance should apply to usage of flexbox

and grid, both of which force their children to be block elements in

a way formatters would be unable to detect. Therefore flex and

grid elements should always contain child tags which are block

formatted by default (ex. use <div> instead of), to align

with the formatter's expectations.

Avoid Changing Collapsing Behavior with white-
space

Third, avoid white-space: pre; and prefer a real <pre> tag

instead. Again, this reduces dependencies on CSS and might not

always be possible, but hopefully is a decent best-practice to

follow.

When you need to configure white-space to something other

than pre, I recommend only setting it on <pre> tags. The <pre>
tag communicates to HTML tooling that its whitespace should be

fully retained because its preformatted. Even if you're actually

using a different white-space mode in your CSS, the <pre> tag is

at least a key signal to HTML tooling that all whitespace should be

treated as significant.

Avoid Insignificant Whitespace in <pre> Tags

Fourth, always write <pre> tags with no leading and trailing

whitespace, and without indentation. They should generally look

like:

<div class="outer">

 <div class="inner">
<pre>Some preformatted text

with a new line
and some other content.</pre>

 </div>
</div>

Yeah, I don't like the look either. But this approach avoids the

confusing leading/trailing newline behavior and prevents

indentation accidentally leaking into the content.

None of these suggestions really help HTML tooling maintainers

unfortunately since they still need to deal with whitespace

regardless. But I warned you at the start, this post is partially for

sharing knowledge and partially for venting about how awful

whitespace in HTML actually is.

Broken? Yes.

Fixable? Not really.

Manageable?

Shout out to Nathan Knowler who helped me understand the

layering between HTML and CSS, precise behavior of , as

well as some of the finer points of the white-space property.

Appendix

https://knowler.dev/

Whitespace of Flexbox Elements

Did you know that flexbox creates even more unique whitespace

behavior? Here's the same code sample, with and without

display: flex;.

Example 28: Block with <div> children.

<div>

 <div>First</div>
 <div>Second</div>

</div>

First
Second

Example 29: Flexbox with <div> children.

<div style="display: flex;">

 <div>First</div>
 <div>Second</div>

</div>

FirstSecond

display: flex; lays out in the inline axis by default, typically

horizontally. Even though we have block elements in the <div>

children, they are placed on the same line. Note the lack of visible

whitespace between the elements. Since whitespace between block

elements are treated as blocks of whitespace elements, they follow

the same rule of "No empty blocks" and are removed, therefore the

whitespace before the <div> children is considered insignificant.

Let's try the same thing with tags!

Here we see that the flex behavior actually didn't change at all. The

 elements are still side by side and there is no whitespace

between them. But don't inline elements preserve spaces between

them?

This is because flexbox children create new block formatting

contexts by default. Quoting MDN again:

Example 30: Flexbox with children.

<div style="display: flex;">
 First
 Second

</div>

FirstSecond

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_display/Block_formatting_context

A block formatting context is created by at least
one of the following:

[...]

Flex items (direct children of the element with display:
flex or inline-flex) if they are neither flex nor grid nor

table containers themselves.

This means each child gets its own block rendering context,

regardless of the default behavior of its tag. Therefore, whitespace

between them is dropped, even though we're using

elements which are natively display: inline;. Grid actually

works the same as flexbox in this respect too.

What this tells us is that not just can CSS inform the whitespace

processing behavior of an HTML element, but the CSS of a different

element can have the same influence.

This is especially problematic if you're writing HTML fragments or

partials. If you write a file which is not a full HTML page but just a

small part of it, and start that file off with a tag, it is

actually unknowable what the display value of that will

be.

<!-- my-component.html -->

I'm inline right?

This is because you can't know what the parent of that tag

will be. If the parent is a <div>, then it will use display:

inline; like naturally does. If it is a flexbox or grid, then it

will be display: block;.

<!-- my-other-component.html -->

<div style="display: flex;">

 <!-- Nope, you're a block now. -->
 ${render('./my-component.html')}

</div>

The correct answer depends on how that HTML partial is used and

can even differ across multiple usages of the same partial!

Whitespace of inline-block Elements

There's even more nuanced whitespace behavior for inline-

block! inline-block elements are treated as inline on the

outside and block on the inside. This means whitespace between

inline-block elements can be significant just like it is for inline
elements.

Let's look at this example from MDN with a couple boxes.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Whitespace#example_3

You should see a small space between the two boxes. I've blown up

the font size to make this space more visible. But where does that

space come from? There's no margin or padding here. In fact, what

if we change the HTML ever so slightly...

Example 31: <inline-block> with whitespace.

<style>
 li {

 display: inline-block;
 width: 2em;

 height: 2em;
 background: red;

 border: 1px solid black;
 }

</style>

Shout out to any developers who had to debug that spacing issue.

And also shout out to Firefox which actually displays a "whitespace"

element in its DevTools to make this somewhat visible.

Example 32: <inline-block> without whitespace.

If doesn't work, what can you do instead? Ideally, you could

just use a regular space since that would naturally avoid

introducing the non-breaking behavior and allow it to be zero-

width when line wrapped. However HTML whitespace collapsing

prevents you from just inserting arbitrary spaces wherever you

want, especially if you want multiple adjacent spaces.

My immediate intuition was to reach for . If you didn't know,

 is a named HTML entity, however there are unnamed

entities as well. Specifically, you can use &#<num>; to get the

character at that Unicode value. 32 happens to be the Unicode

value of a standard space, so we can use just like a space

character.

Unfortunately it's so equivalent that it's also subject to the same

whitespace collapsing behavior. So you can put as many as

you want, you'll still get at most only one space. My sincerest

apologies to the three people reading this who want to put two

spaces after the end of a sentence.

This behavior actually feels objectively wrong to me. Whitespace

collapsing is a affordance for the developer experience so you don't

have to butcher your HTML code to get a reasonable output. But if

the developer hand-writes , they clearly care about

rendering a space in that slot and are giving up a convenient DX to

do it. Whatever developer writes multiple almost certainly

does not expect them to be collapsed together.

Example 33: spaces.

<div>Hello World!</di

Hello World!

I wasn't able to come up with a compelling reason for why a

developer would want to be collapsible, but I think I do

understand why it works this way. As mentioned earlier, CSS

controls whitespace collapsing, not the HTML parser. This means

the HTML parser needs to convert to literal spaces and

retain all of them for all elements. It's then up to CSS to decide

which spaces are significant. Because of that, CSS can't distinguish

between a literal space and a entity, they're the same thing

(Unicode character 32 to be precise).

I can see an argument that this actually is desirable for purposes of

consistency. On a certain level, a literal space and should be

indistinguishable and lead to the same behavior. However, I think

that's a stronger argument for how the spaces are observable at

runtime, not how the HTML parser interprets the code. I think it

would be reasonable for the HTML parser to distinguish a space

character and a entity to use different collapsing behaviors.

For example, < and < are not the same because the former

starts an HTML tag while the later is a text literal for < which

explicitly does not start an HTML tag. Unfortunately the HTML

parser isn't the one doing the collapsing, so we've lost that

information by the time CSS handles it. This "bug" with feels

like a side-effect of the decision to allow CSS to influence

whitespace behavior.

Isn't HTML Just a Document?

One potential advantage to the way HTML whitespace works is that

it makes the format more accessible to non-developers. HTML was

intended to represent documents, so just look for the text you want

to modify and then update it to whatever new text you want to use.

Don't worry about the syntax at all!

That sounds great in theory, but it's also not true. A core aspect of

writing plain text is the spacing and formatting of that text. Yet

HTML breaks even the most basic rules of how text can be

formatted. Take this example of some text a non-developer might

try to write without any knowledge of HTML and how it actually

renders when thrown into a document unmodified.

34. Plain text.

First: Say "hello".
Second: Say "world".

Here's my shopping list for today:

> Apples
> Oranges

> Bananas

First: Say "hello". Second: Say "world". Here's my shopping list for
today: > Apples > Oranges > Bananas

Everything gets rendered onto one line, \n is effectively

meaningless and dropped entirely. First: had two spaces to align

with Second:, but they are collapsed together. The list format is

completely destroyed. This is all without mentioning that you

should escape > into >, so I would argue it's almost a security

issue to think of HTML in this mindset in the first place. This kind

of use case requires <pre> tags which completely changes the

behavior of everything.

Text documents have two intrinsic features to support formatting:

spaces and newlines. HTML breaks both of those features with

whitespace collapsing. You can't blindly copy-paste from any other

text document into an HTML page and expect any kind of sane

behavior. Where non-developers do write text content which is

rendered in HTML web pages, they typically do it through a

content management system (CMS), not by hand-writing HTML

files anyways.

You can't think of HTML code like a plain text document.

Whitespace Control Characters

If you really don't like quoting strings in HTML, one potential

alternative approach to is to borrow an idea from HTML

preprocessors which have whitespace control characters. For

example, Nunjucks uses {% expr %} to denote interpolations, but

you can use {%- expr -%} to trim whitespace surrounding the

content.

https://mozilla.github.io/nunjucks/
https://mozilla.github.io/nunjucks/templating.html#whitespace-control

<div>
 Say hello to

 {%- username -%}
 and welcome them to the team!

</div>

Here, the whitespace around {%- username -%} is removed

because {%- and -%} are used, meaning this will output:

<div>

 Say hello to Devel and welcome them to the team!
</div>

You could add a similar syntax to HTML to trim whitespace around

particular elements, maybe <-tag-> and <-/tag->? I don't know,

that looks way worse than quotes to me...

I don't hate this approach, as it does remove the general ambiguity

around whether any given space is significant or not and if that's

more palatable to the community I could probably be talked into it

some form of this being applied to HTML.

However it doesn't address the issue of interior whitespace such as

multiple adjacent spaces or spaces from a CMS tool. We'd also still

need to make the suggested changes to decouple CSS from

whitespace-processing behavior.

Interesting post? Share it!

About the author

Doug is an overly opinionated software engineer on the
Angular team. He is passionate about the web and
developer tooling, hoping to simplify software
development for everyone.

Reach out about anything: Social links

Fix a typo or help me write more gooder: dgp1130/blog

© Copyright 2024, Douglas Parker. All rights reserved. Powered by Eleventy and Netlify.
Copyright notices and attributions. Privacy policy.

I also don't care for this approach because I believe it shifts the

burden of understanding whitespace to the developer. They need

to recognize "Oh, in this situation I need to use a <-tag> because

the whitespace after it is important, but the whitespace before

isn't". I think just requiring quotes would make this much more

obvious to most developers who would get their spacing right the

first time, rather than opting into special syntax to fix the problem

afterwards.

I do see the impact of quotes to the general DX of HTML and I

understand the knee-jerk emotional reaction of a lot of developers.

That said, I honestly believe quotes would be a net DX

improvement, even if it does result in more typing.

https://blog.dwac.dev/feed.xml
https://blog.dwac.dev/feed.xml
https://twitter.com/intent/tweet?text=Check%20out%3A%20%22HTML%20Whitespace%20is%20Broken%20-%20Devel%20without%20a%20Cause%22.%20https%3A%2F%2Fblog.dwac.dev%2Fposts%2Fhtml-whitespace%2F
https://twitter.com/intent/tweet?text=Check%20out%3A%20%22HTML%20Whitespace%20is%20Broken%20-%20Devel%20without%20a%20Cause%22.%20https%3A%2F%2Fblog.dwac.dev%2Fposts%2Fhtml-whitespace%2F
https://blog.dwac.dev/social
https://github.com/dgp1130/blog/blob/main/src/www/posts/html-whitespace/html-whitespace.md
https://www.11ty.dev/
https://www.netlify.com/
https://blog.dwac.dev/attributions/
https://blog.dwac.dev/privacy/

