
Simon Willison’s TILs

A shell script for running Go one-liners

bitfield/script is a really neat Go project: it tries to emulate shell scripting using Go chaining primitives, so
you can run code like this:

script.Stdin().Column(1).Freq().First(10).Stdout()

To achieve the same thing as:

cat file.txt | cut -f1 | sort | uniq -c | sort -nr | head -10

A comment from jvictor118 on Hacker News:

If one were actually going to use something like this, I’d think it’d be worth implementing a little
shebang script that can wrap a single-file script in the necessary boilerplate and call go run!

This is exactly the kind of thing I can't quite be bothered to write myself, but I'm happy to coach GPT-4
through building.

The result: goscript.sh. You can use it like this:

cat file.txt | ./goscript.sh -c 'script.Stdin().Column(1).Freq().First(10).Stdout()'

Or you can create a script file like this one, saved as top10.goscript:

script.Stdin().Column(1).Freq().First(10).Stdout()

And run:

cat file.txt | ./goscript.sh top10.goscript

Finally, you can set the shebang line in a script file like this:

#!/tmp/goscript.sh

script.Stdin().Column(1).Freq().First(10).Stdout()

Then run this:

chmod 755 top10.goscript

cat file.txt | ./top10.goscript

The script #

Here's the goscript.sh script that GPT-4 and I came up with:

#!/bin/bash

TMPDIR=$(mktemp -d /tmp/goscript.XXXXXX)

SUBDIR="$TMPDIR/goscript_inner"

mkdir -p $SUBDIR

trap "rm -rf $TMPDIR" EXIT

https://til.simonwillison.net/
https://github.com/bitfield/script
https://news.ycombinator.com/threads?id=simonw#37199848

TMPFILE="$SUBDIR/script.go"

Write boilerplate to tmpfile

cat > $TMPFILE <<EOF

package main

import (

 "github.com/bitfield/script"

)

func main() {

EOF

Check for -c flag

if ["$1" == "-c"]; then

 # Add the literal string from argument

 echo "$2" >> $TMPFILE

else

 # Add user's code from file

 sed '/^#!/d' "$1" >> $TMPFILE

fi

Close main function

echo "}" >> $TMPFILE

Initialize a new module in subdir, fetch dependencies, and run

pushd $SUBDIR > /dev/null 2>&1

go mod init tmp > /dev/null 2>&1

go get github.com/bitfield/script > /dev/null 2>&1

go run script.go

popd > /dev/null 2>&1

And the full ChatGPT transcript that lead to the final script presented here.

(Missing from that transcript is the final step where we added the sed line to strip out the shebang.)

Here's what I learned from the above code.

The program itself is wrapped in the following boilerplate, using >> to write to the temporary file:

package main

import (

 "github.com/bitfield/script"

)

func main() {

 // User's code goes here

}

With modern Go you need to use the following pattern to get something like this to work with a
dependency:

go mod init tmp

go get github.com/bitfield/script

go run script.go

https://chat.openai.com/share/c4ca8622-9b01-4189-9e29-7414ddf79238

go get downloads the dependency, using a cache if it's already been downloaded.

The shell script runs all of that in a temporary directory, created using:

TMPDIR=$(mktemp -d /tmp/goscript.XXXXXX)

SUBDIR="$TMPDIR/goscript_inner"

mkdir -p $SUBDIR

That mktemp -d /tmp/goscript.XXXXXX line uses the templating feature of mktemp, where a sequence of
XXX is replaced by random characters.

The trap call is interesting - see also Running multiple servers in a single Bash script. Effectively it
ensures the temporary directory is deleted when the script terminates, no matter why it terminates
(success or error):

trap "rm -rf $TMPDIR" EXIT

I wanted to support two ways of calling the script:

./goscript.sh -c 'go code here'

./goscript.sh script.goscript

That's handled by this conditional check:

if ["$1" == "-c"]; then

 # Add the literal string from argument

 echo "$2" >> $TMPFILE

else

 # Add user's code from file

 sed '/^#!/d' "$1" >> $TMPFILE

fi

The sed line is necessary because if you have a script that looks like this:

#!/tmp/goscript.sh

script.Stdin().Column(1).Freq().First(10).Stdout()

That first line will be copied into the Go code in a way that breaks syntax. Using sed here strips that line
out before copying the rest of the file into the main() function in the boilerplate.

With this accounted for, running ./top10.goscript effectively runs the same as calling ./goscript.sh
top10.goscript.

Several of the commands in the script output information to stdout or stderr - we fixed that with this
pattern:

go mod init tmp > /dev/null 2>&1

(It feels weird to refer to the combination of myself and GPT-4 as "we", but I think it's an honest description
of the we we collaborated to build this.)

Related

 Using ChatGPT to write AppleScript - 2023-03-08gpt3

https://til.simonwillison.net/bash/multiple-servers
https://til.simonwillison.net/gpt3/chatgpt-applescript

 Installing tools written in Go - 2024-03-25

 Running nanoGPT on a MacBook M2 to generate terrible Shakespeare - 2023-02-01

 CLI tools hidden in the Python standard library - 2023-06-28

 Expanding ChatGPT Code Interpreter with Python packages, Deno and Lua - 2023-04-30

 Using GPT-3 to figure out jq recipes - 2022-08-10

 Running OpenAI's large context models using llm - 2023-06-13

 GitHub Actions job summaries - 2022-05-17

 Running multiple servers in a single Bash script - 2023-08-16

 Using ChatGPT Browse to name a Python package - 2023-06-18

Created 2023-08-20T09:00:31-07:00, updated 2023-08-20T15:27:17-07:00 · History · Edit

go

llms

python

llms

gpt3

llms

github-actions

bash

gpt3

https://til.simonwillison.net/go/installing-tools
https://til.simonwillison.net/llms/nanogpt-shakespeare-m2
https://til.simonwillison.net/python/stdlib-cli-tools
https://til.simonwillison.net/llms/code-interpreter-expansions
https://til.simonwillison.net/gpt3/jq
https://til.simonwillison.net/llms/larger-context-openai-models-llm
https://til.simonwillison.net/github-actions/job-summaries
https://til.simonwillison.net/bash/multiple-servers
https://til.simonwillison.net/gpt3/picking-python-project-name-chatgpt
https://github.com/simonw/til/commits/main/bash/go-script.md
https://github.com/simonw/til/blob/main/bash/go-script.md

