ENOSUCHBLOG

Programming, philosophy, pedaling.

Home Tags Series Favorites Archive Main Site TILs

Be aware of the Makefile effect
Jan 10, 2025 Tags: programming

I’m not aware of aperfectl term for this, so I'm making one up: the Makefile effect?.

The Makefile effect boils down to this:

Tools of a certain complexity or routine unfamiliarity are not run de novo, but are instead copy-
pasted and tweaked from previous known-good examples.

You see this effect frequently with engineers of all stripes and skill/experience levels, with Make be-
ing a common example3:

1. Atask (one of a common shape) needs completing. A very similar (or even identical)
task has been done before.

2. Make (or another tool susceptible to this effect) is the correct or “best” (given expedi-
ence, path dependencies, whatever) tool for the task.

3. Instead of writing a Makefile, the engineer copies a previous (sometimes very large

and complicated?) Makefile from a previous instance of the task and tweaks it until
it works in the new context.

On one level, this is a perfectly good (even ideal) engineering response at the point of solution: ap-
plying a working example is often the parsimonious thing to do, and runs a lesser (in theory) risk of
introducing bugs, since most of the work is unchanged.

However, at the point of design, this suggests a tool design (or tool application5) that is flawed: the
tool (or system) is too complicated (or annoying) to use from scratch. Instead of using it to solve a
problem from scratch, users repeatedly copy a known-good solution and accrete changes over time.

Once you notice it, you start to see this pattern all over the place. Beyond Make:

» CI/CD configurations like GitHub Actions and GitLab CI/CD, where users copy their
YAML spaghetti from the /ast working setup and tweak it (often with repeated re-runs)
until it works again;


https://blog.yossarian.net/
https://blog.yossarian.net/tags
https://blog.yossarian.net/series
https://blog.yossarian.net/favorites
https://blog.yossarian.net/archive
https://yossarian.net/
https://yossarian.net/til
https://blog.yossarian.net/2025/01/10/Be-aware-of-the-Makefile-effect
https://blog.yossarian.net/tags#programming
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Make_(software)

« Linter and formatter configurations, where a basic set of rules gets copied between
projects and strengthened/loosened as needed for local conditions;

« Build systems themselves, where everything non-trivial begins to resemble the previ-
ous build system.

Does this matter?

In many cases, perhaps not. However, | think it's worth thinking about, especially when designing

tools and systems:

» Tools and systems that enable this pattern often have less-than-ideal diagnostics or
debugging support: the user has to run the tool repeatedly, often with long delays, to
get back relatively small amounts of information. Think about CI/CD setups, where
users diagnose their copy-pasted CI/CD by doing print-style debugging over the net-
work with a layer of intermediating VM orchestration. Ridiculous!

« Tools that enable this pattern often discourage broad learning: a few mavens know
the tool well enough to configure it, and others copy it with just enough knowledge to
do targeted tweaks. This is sometimes inevitable, but often not: dependency graphs
are an inherent complexity of build systems, but remembering the difference between
$< and $” in Make is not.

 Tools that enable this pattern are harder to use securely: security actions typically re-
quire deep knowledge of the why behind a piece of behavior. Systems that are sub-
ject to the Makefile effect are also often ones that enable confusion between code
and data (or any kind of in-band signalling more generally), in large part because
functional solutions are not always secure ones. Consider, for example, about tem-
plate injection in GitHub Actions.

In general, | think well-designed tools (and systems) should aim to minimize this effect. This can be

hard to do in a fully general manner, but some things | think about when designing a new tool:

Does it need to be configurable?
« Does it need syntax of its own?

o As a corollary: can it reuse familiar syntax or idioms from other
tools/CLIs?

« Do I end up copy-pasting my use of it around? If so, are others likely to do the same?

1. The Makefile effect resembles other phenomena, like cargo culting, normalization of
deviance, “write-only language,” &c. I'll argue in this post that it's a little different from
each of these, insofar as it's not inherently ineffective or bad and concerns the out-
come of specific designs. <

2. Also note: the title is “be aware,” not “beware.” The Makefile effect is not inherently
bad! It's something to be aware of when designing tools and systems. <«

3. Make is just an example, and not a universal one: different groups of people master
different tools. The larger observation is that there are classes of tools/systems that


https://en.wikipedia.org/wiki/In-band_signaling
https://woodruffw.github.io/zizmor/audits/#template-injection
https://woodruffw.github.io/zizmor/audits/#template-injection
https://woodruffw.github.io/zizmor/audits/#template-injection
https://wiki.c2.com/?WriteOnlyLanguage

are (more) susceptible to this, and classes that are (relatively) less susceptible to
it. €

4. I've heard people joke about their “heritage” Makefiles, i.e. Makefiles that were
passed down to them by senior engineers, professors, &c. The implication is that
these forebearers also inherited the Makefile, and have been passing it down with
small tweaks since time immemorial. <

5. Complex tools are a necessity; they can’'t always be avoided. However, the occur-
rence of the Makefile effect in a simple application suggests that the tool is too com-
plicated for that application. <

Previously


https://blog.yossarian.net/2025/01/02/zizmor-1-0

