
ENOSUCHBLOG
Programming, philosophy, pedaling.

Home Tags Series Favorites Archive Main Site TILs

Be aware of the Makefile effect
Jan 10, 2025 Tags: programming

I’m not aware of a perfect1 term for this, so I’m making one up: the Makefile effect2.

The Makefile effect boils down to this:

Tools of a certain complexity or routine unfamiliarity are not run de novo, but are instead copy-
pasted and tweaked from previous known-good examples.

You see this effect frequently with engineers of all stripes and skill/experience levels, with Make be‐
ing a common example3:

1. A task (one of a common shape) needs completing. A very similar (or even identical)
task has been done before.

2. Make (or another tool susceptible to this effect) is the correct or “best” (given expedi‐
ence, path dependencies, whatever) tool for the task.

3. Instead of writing a Makefile, the engineer copies a previous (sometimes very large
and complicated4) Makefile from a previous instance of the task and tweaks it until
it works in the new context.

On one level, this is a perfectly good (even ideal) engineering response at the point of solution: ap‐
plying a working example is often the parsimonious thing to do, and runs a lesser (in theory) risk of
introducing bugs, since most of the work is unchanged.

However, at the point of design, this suggests a tool design (or tool application5) that is flawed: the
tool (or system) is too complicated (or annoying) to use from scratch. Instead of using it to solve a
problem from scratch, users repeatedly copy a known-good solution and accrete changes over time.

Once you notice it, you start to see this pattern all over the place. Beyond Make:

CI/CD configurations like GitHub Actions and GitLab CI/CD, where users copy their
YAML spaghetti from the last working setup and tweak it (often with repeated re-runs)
until it works again;

https://blog.yossarian.net/
https://blog.yossarian.net/tags
https://blog.yossarian.net/series
https://blog.yossarian.net/favorites
https://blog.yossarian.net/archive
https://yossarian.net/
https://yossarian.net/til
https://blog.yossarian.net/2025/01/10/Be-aware-of-the-Makefile-effect
https://blog.yossarian.net/tags#programming
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Make_(software)

Linter and formatter configurations, where a basic set of rules gets copied between
projects and strengthened/loosened as needed for local conditions;

Build systems themselves, where everything non-trivial begins to resemble the previ‐
ous build system.

Does this matter?

In many cases, perhaps not. However, I think it’s worth thinking about, especially when designing
tools and systems:

Tools and systems that enable this pattern often have less-than-ideal diagnostics or
debugging support: the user has to run the tool repeatedly, often with long delays, to
get back relatively small amounts of information. Think about CI/CD setups, where
users diagnose their copy-pasted CI/CD by doing print-style debugging over the net‐
work with a layer of intermediating VM orchestration. Ridiculous!

Tools that enable this pattern often discourage broad learning: a few mavens know
the tool well enough to configure it, and others copy it with just enough knowledge to
do targeted tweaks. This is sometimes inevitable, but often not: dependency graphs
are an inherent complexity of build systems, but remembering the difference between
$< and $^ in Make is not.

Tools that enable this pattern are harder to use securely: security actions typically re‐
quire deep knowledge of the why behind a piece of behavior. Systems that are sub‐
ject to the Makefile effect are also often ones that enable confusion between code
and data (or any kind of in-band signalling more generally), in large part because
functional solutions are not always secure ones. Consider, for example, about tem‐
plate injection in GitHub Actions.

In general, I think well-designed tools (and systems) should aim to minimize this effect. This can be
hard to do in a fully general manner, but some things I think about when designing a new tool:

Does it need to be configurable?

Does it need syntax of its own?

As a corollary: can it reuse familiar syntax or idioms from other
tools/CLIs?

Do I end up copy-pasting my use of it around? If so, are others likely to do the same?

1. The Makefile effect resembles other phenomena, like cargo culting, normalization of
deviance, “write-only language,” &c. I’ll argue in this post that it’s a little different from
each of these, insofar as it’s not inherently ineffective or bad and concerns the out‐
come of specific designs. ↩

2. Also note: the title is “be aware,” not “beware.” The Makefile effect is not inherently
bad! It’s something to be aware of when designing tools and systems. ↩

3. Make is just an example, and not a universal one: different groups of people master
different tools. The larger observation is that there are classes of tools/systems that

https://en.wikipedia.org/wiki/In-band_signaling
https://woodruffw.github.io/zizmor/audits/#template-injection
https://woodruffw.github.io/zizmor/audits/#template-injection
https://woodruffw.github.io/zizmor/audits/#template-injection
https://wiki.c2.com/?WriteOnlyLanguage

Previously

are (more) susceptible to this, and classes that are (relatively) less susceptible to
it. ↩

4. I’ve heard people joke about their “heritage” Makefiles, i.e. Makefiles that were
passed down to them by senior engineers, professors, &c. The implication is that
these forebearers also inherited the Makefile, and have been passing it down with
small tweaks since time immemorial. ↩

5. Complex tools are a necessity; they can’t always be avoided. However, the occur‐
rence of the Makefile effect in a simple application suggests that the tool is too com‐
plicated for that application. ↩

https://blog.yossarian.net/2025/01/02/zizmor-1-0

