
DEC 21, 2022

BY ANA HOBDEN

Nix on the Steam Deck

how-to installer

When I first started using Linux in 2006 I remember dreaming of a Linux

Console. The idea maybe wasn’t so far fetched at the time, the

PlayStation 3 had just been released with OtherOS support which

allowed users to install Linux (or BSD). Still, it seemed that a Linux-first

console would only ever be a dream. Now in 2022, Valve’s Steam Deck is

a hackable Linux-first portable console.

Today, we’ll be putting Nix on it, because what’s Linux without Nix?

https://determinate.systems/people/ana-hobden
https://determinate.systems/posts/categories/how-to
https://determinate.systems/posts/tags/installer
https://determinate.systems/
https://determinate.systems/

“Just wanna try it? Jump to the fun part. Want NixOS instead?

A different, spicier kind of fun can be found here.”

The Steam Deck is a portable computer that has a Nintendo Switch-like

form factor and touts an AMD x86_64 processor. It has WiFi, Bluetooth,

and a USB-C port which you can plug a hub into, allowing the

attachment of HDMI, mice, keyboards, power, or ethernet cables.

It runs a flavour of Arch Linux called SteamOS, and guides users to use

Flatpak and Flathub. This is a fantastic solution and provides users

access to a wide variety of software, but as a developer I tend to want

more exotic stuff that exists in nixpkgs.

In case you’d not seen one yet, here’s a picture of mine:

https://github.com/Jovian-Experiments/Jovian-NixOS
https://github.com/flatpak/flatpak
https://flathub.org/home
https://github.com/NixOS/nixpkgs

My Deck, alongside the peripherals I use with it: PS5 Controller, a USB-C

hub, and an Ergodox.

Installing Nix on the Steam Deck has a few special steps. Let’s review

how a Nix install process looks, then how the Deck works, and finally

we can explore a working approach to install Nix.

How a Nix install works

A normal Nix install process on Linux works roughly like this:

Create a folder called /nix

Unpack the Nix distribution tarball into /nix

Create some Nix daemon users and a group (affecting /etc)

Call systemctl link on some systemd units from /nix (affecting

/etc)

Sprinkle some magic in the detected shell profiles (in /etc) to

ensure nix is on $PATH

On Mac, where creating a /nix is forbidden (by the creators, Apple), we

can modify /etc/synthetic.conf to create a stub which we can mount

an APFS volume to. The installation otherwise proceeds as normal.

On the Steam Deck, creating /nix also requires special steps.

Unfortunately, there is no feature similar to /etc/synthetic.conf.

Why does the Deck need these special steps? Let’s take a look at the

Steam Deck itself and figure out why we can’t just run the familiar Nix

installer.

https://keith.github.io/xcode-man-pages/synthetic.conf.5.html

The Deck & SteamOS

The Steam Deck ships with an Arch Linux based distribution called

SteamOS — a special image of it to be even more precise. Normally Arch

Linux is a perfectly fine target for Nix, but there are a couple

particularities around this distribution that impact how we can install

Nix.

Disk Topology

The Deck uses an A/B boot system (like some Android phones), which

means it has two parallel installations, booting into one and updating

the other. This means, if it ever fails after an update it can safely roll

back to a known good state.

“NixOS user? Sound familiar? It’s like the generation selector in your

bootloader, but instead of pointing your boot to different Nix store

paths, it points to entirely different partitions!”

See how there is A and B copies of most partitions?

This looks a heck of a lot different than my development machine:

(deck@steamdeck ~)$ sudo gdisk /dev/nvme0n1 -l

Number Start (sector) End (sector) Size Code Name

 1 2048 133119 64.0 MiB EF00 esp

 2 133120 198655 32.0 MiB 0700 efi-A

 3 198656 264191 32.0 MiB 0700 efi-B

 4 264192 10749951 5.0 GiB 8304 rootfs-A

 5 10749952 21235711 5.0 GiB 8304 rootfs-B

 6 21235712 21759999 256.0 MiB 8310 var-A

 7 21760000 22284287 256.0 MiB 8310 var-B

 8 22284288 1000215175 466.3 GiB 8302 home

https://archlinux.org/
https://store.steampowered.com/steamos
https://help.steampowered.com/en/faqs/view/1b71-edf2-eb6d-2bb3
https://source.android.com/docs/core/ota/ab

Checking for encryption with blkid | grep crypto_LUKS showed all

partitions were unencrypted, this makes sense since the Deck never asks

for a password, even for sudo, until you set one. It’s a bit unfortunate

Valve did not opt to protect their user’s data in the event this portable

device was stolen, but it’s room to improve.

This A/B boot system means even if rootfs partitions get modified,

those changes may get wiped out at any time. The system may update

or choose to boot into the other ‘letter’ for some other reason. We want

something that is update-proof and will survive a change of ‘letter’.

One partition that persists across reboots and has enough space to

contain a thick, chunky Nix store is the home partition. Our Nix install

can keep persistent data there.

Read-Only Filesystem

Reviewing the mount output is a bit misleading. While the / mount says

it is rw, it is normally not.

Number Start (sector) End (sector) Size Code Name

 1 2048 2099199 1024.0 MiB EF00 efi

 2 2099200 3907029134 1.8 TiB 8309 encrypt

(deck@steamdeck ~)$ mount | grep /dev/nvme

/dev/nvme0n1p4 on / type btrfs (rw,relatime,ssd,space_cache=v2,su

/dev/nvme0n1p6 on /var type ext4 (rw,relatime)

/dev/nvme0n1p8 on /home type ext4 (rw,relatime,x-systemd.growfs)

/dev/nvme0n1p8 on /opt type ext4 (rw,relatime)

/dev/nvme0n1p8 on /root type ext4 (rw,relatime)

/dev/nvme0n1p8 on /srv type ext4 (rw,relatime)

/dev/nvme0n1p8 on /var/cache/pacman type ext4 (rw,relatime)

/dev/nvme0n1p8 on /var/lib/docker type ext4 (rw,relatime)

/dev/nvme0n1p8 on /var/lib/flatpak type ext4 (rw,relatime)

This isn’t a scary vendor lockdown security feature or anything, it’s

mostly to prevent the user from being surprised when the A/B boot

happens. SteamOS comes with a steamos-readonly executable we can

use to toggle this read-only feature at any time, this can allow us to

make small changes to the root filesystem as long as we don’t expect

them to persist across boots.

Because of this, if we wanted, we could create a /nix path on the

rootfs each boot by making the root momentarily writable.

Not all of the device is read-only though! We can write to places like

/etc/, but not to /lib, /usr, or /bin.

Recalling the rough steps from the install process, this isn’t a problem!

So long as we work out the machinery to ensure /nix is available, the

Steam Deck looks otherwise like a normal system to Nix.

Enabling an Install

/dev/nvme0n1p8 on /var/lib/systemd/coredump type ext4 (rw,relatim

/dev/nvme0n1p8 on /var/log type ext4 (rw,relatime)

/dev/nvme0n1p8 on /var/tmp type ext4 (rw,relatime)

(deck@steamdeck ~)$ sudo touch /boop

touch: cannot touch '/boop': Read-only file system

(deck@steamdeck ~)$ sudo touch /etc/boop

(deck@steamdeck ~)$ sudo rm /etc/boop

(1)(deck@steamdeck ~)$ sudo touch /lib/boop

touch: cannot touch '/lib/boop': Read-only file system

(1)(deck@steamdeck ~)$ sudo touch /bin/boop

touch: cannot touch '/bin/boop': Read-only file system

(1)(deck@steamdeck ~)$ sudo touch /usr/boop

touch: cannot touch '/usr/boop': Read-only file system

As we discovered, creating the /nix directory in a safe way that persists

will be our primary challenge.

Since it wouldn’t be a great idea to store the Nix Store on the rootfs

partitions, we must decide somewhere else. The most immediately

obvious answer is /home/nix, since that is a large, persistent location.

With an existing /home/nix, we can use a bind mount to mount that to

/nix. First, a /nix path needs be created somehow!

Luckily, with /etc writable, we can drop systemd units into

/etc/systemd/system that will set up /nix for us.

We’ll create a nix-directory.service unit which creates the /nix path,

and a nix.mount unit which depends on that.

Sadly, that’s not quite enough to enable a full install though. Since the

Nix install process involves systemctl link $UNIT, some of the systemd

units are not available during systemd’s startup. Therefore we must

reload the systemd daemon itself after the nix.mount unit is started. In

order to do that, we follow the same method as Flatcar Linux does

here.

Let’s cover what these units look like then test them out with the Nix

installer! If you’re feeling brave I invite you to help us test an

experimental Nix installer we’ve been working on which has a special

codepath just for the Steam Deck. Otherwise, follow along below to try

the traditional install script.

But first, just in case:

Not sure how to get to ‘Desktop mode’? Hit the Steam button, go

to ‘Power’, go to ‘Switch to Desktop’

https://www.baeldung.com/linux/bind-mounts
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.flatcar.org/
https://github.com/flatcar/init/blob/flatcar-master/systemd/system/ensure-sysext.service

Not sure how to get a terminal? In ‘Desktop Mode’ hit the logo in

the bottom left corner, in the search bar type “Terminal”, select

‘Konsole’

Not sure how to edit files? You can use vim if you are familiar,

otherwise try nano from the terminal.

Putting it all together

“Want to follow along without a Deck? Learn how to set up a Deck

VM with this article.”

There are only four Steam Deck specific steps, three are to create the

systemd units. The final one is to enable one of those units.

Create the systemd units at the noted paths, I suggest using a keyboard

plugged into the Deck if you can, or enable SSH via sudo systemctl

start sshd, reviewing the IP address via ip a, and setting a password. If

those options are unavailable, hit the Steam and X buttons to summon

the keyboard.

1 [Unit]

2 Description=Create a `/nix` directory to be used for bind m

3 PropagatesStopTo=nix-daemon.service

4 PropagatesStopTo=nix.mount

5 DefaultDependencies=no

6

7 [Service]

8 Type=oneshot

9 ExecStart=steamos-readonly disable

10 ExecStart=mkdir -vp /nix

11 ExecStart=chmod -v 0755 /nix

12 ExecStart=chown -v root /nix

13 ExecStart=chgrp -v root /nix

/etc/systemd/system/nix-directory.service

https://blogs.igalia.com/berto/2022/07/05/running-the-steam-decks-os-in-a-virtual-machine-using-qemu/
https://help.steampowered.com/en/faqs/view/671A-4453-E8D2-323C

The above unit is the first in our chain of units, it checks if a /nix folder

exists, and if necessary, calls steamos-readonly disable, creates /nix,

then calls steamos-readonly enable again. It also attempts to do some

cleanup as it stops, but that part is unnecessary.

This mount unit performs a bind mount from /home/nix to /nix. It’ll

create /home/nix for us, but sadly it cannot create /nix, relying on the

nix-directory.service before it.

14 ExecStart=steamos-readonly enable

15 ExecStop=steamos-readonly disable

16 ExecStop=rmdir /nix

17 ExecStop=steamos-readonly enable

18 RemainAfterExit=true

1 [Unit]

2 Description=Mount `/home/nix` on `/nix`

3 PropagatesStopTo=nix-daemon.service

4 PropagatesStopTo=nix-directory.service

5 After=nix-directory.service

6 Requires=nix-directory.service

7 ConditionPathIsDirectory=/nix

8 DefaultDependencies=no

9 RequiredBy=nix-daemon.service

10 RequiredBy=nix-daemon.socket

11

12 [Mount]

13 What=/home/nix

14 Where=/nix

15 Type=none

16 DirectoryMode=0755

17 Options=bind

/etc/systemd/system/nix.mount

/etc/systemd/system/ensure-symlinked-units-resolve.service

This final unit in the chain restarts the systemd daemon, allowing it to

properly resolve any previously broken symlinks during the boot, before

starting or enabling them if necessary.

“Tailscale user? A similar strategy can be used after performing

systemd-sysext merge if you happen to also use Tailscale on your

Steam Deck to make sure it starts at boot.”

After creating the units, we need to enable (and start) the last, causing

the ones it requires to also start:

Now we can just run the Nix installer like normal:

1 [Unit]

2 Description=Ensure Nix related units which are symlinked re

3 After=nix.mount

4 Requires=nix-directory.service

5 Requires=nix.mount

6 DefaultDependencies=no

7

8 [Service]

9 Type=oneshot

10 RemainAfterExit=yes

11 ExecStart=/usr/bin/systemctl daemon-reload

12 ExecStart=/usr/bin/systemctl restart --no-block nix-daemon

13

14 [Install]

15 WantedBy=sysinit.target

sudo systemctl enable --now ensure-symlinked-units-resolve.servic

sh <(curl -L https://nixos.org/nix/install) --daemon

https://tailscale.com/blog/steam-deck/
https://tailscale.com/blog/steam-deck/
https://nixos.org/manual/nix/stable/quick-start.html

Follow the prompts, call exec $SHELL (or open a new shell, or reboot)

and Nix should work on command line!

Feel free to reboot a few times, or even update your Steam Deck. As far

as I’ve experimented, it should keep working!

If you cause a instant, hard, full power loss (such as Ctrl+C’ing the VM)

before it can properly fsync(), you may see an error like error:

expected string 'Derive(['. To resolve this error, run nix store gc.

You can avoid this by running sync before killing the device.

Find out more about building Linux systems using Nix

An invitation to experiment

(deck@steamdeck ~)$ nix-instantiate --eval -E '1 + 1'

2

(deck@steamdeck ~)$ nix-build '<nixpkgs>' -A hello

these 4 paths will be fetched (6.73 MiB download, 31.05 MiB unpac

 /nix/store/34xlpp3j3vy7ksn09zh44f1c04w77khf-libunistring-1.0

 /nix/store/4nlgxhb09sdr51nc9hdm8az5b08vzkgx-glibc-2.35-163

 /nix/store/5mh5019jigj0k14rdnjam1xwk5avn1id-libidn2-2.3.2

 /nix/store/g2m8kfw7kpgpph05v2fxcx4d5an09hl3-hello-2.12.1

copying path '/nix/store/34xlpp3j3vy7ksn09zh44f1c04w77khf-libunis

copying path '/nix/store/5mh5019jigj0k14rdnjam1xwk5avn1id-libidn2

copying path '/nix/store/4nlgxhb09sdr51nc9hdm8az5b08vzkgx-glibc-2

copying path '/nix/store/g2m8kfw7kpgpph05v2fxcx4d5an09hl3-hello-2

/nix/store/g2m8kfw7kpgpph05v2fxcx4d5an09hl3-hello-2.12.1

(deck@steamdeck ~)$./result/bin/hello

Hello, world!

Email address Subscribe

Part of the reason we wanted to explore Nix on the Steam Deck is that

we’re currently experimenting with a new Nix installer, and we were

curious what we could learn from adding support for a specific device

which had special requirements, such as the Steam Deck.

If you feel like experimenting (and don’t mind things breaking) feel

encouraged to try out our prototype! Don’t worry, if you don’t like it, it

includes an uninstaller so you can roll back and do your install with the

traditional scripts.

You can run it like this:

If you don’t feel like being experimental, this is what it looks like:

curl -L https://install.determinate.systems/nix | sh -s -- instal

(deck@steamdeck ~)$ curl -L https://install.determinate.systems/n

 % Total % Received % Xferd Average Speed Time Time

 Dload Upload Total Spent

 0 0 0 0 0 0 0 0 --:--:-- --:--:--

 0 0 0 0 0 0 0 0 --:--:-- --:--:--

100 15739 100 15739 0 0 22981 0 --:--:-- --:--:--

info: downloading installer https://install.determinate.systems/n

./nix-installer install steam-deck

`nix-installer` needs to run as `root`, attempting to escalate no

Nix install plan (v0.0.0-unreleased)

Planner: steam-deck

Planner settings:

* persistence: "/home/nix"

* channels: ["nixpkgs=https://nixos.org/channels/nixpkgs-unstable

* nix_build_user_id_base: 3000

* extra_conf: []

* modify_profile: true

* force: false

* daemon_user_count: 32

* nix_build_group_name: "nixbld"

* nix_build_user_prefix: "nixbld"

* nix_package_url: "https://releases.nixos.org/nix/nix-2.12.0/nix

* nix_build_group_id: 3000

These actions will be taken (`--explain` for more context):

* Create directory `/home/nix`

* Create or overwrite file `/etc/systemd/system/nix-directory.ser

* Create or overwrite file `/etc/systemd/system/nix.mount`

* Create or overwrite file `/etc/systemd/system/ensure-symlinked

* Enable (and start) the systemd unit ensure-symlinked-units-reso

* Fetch `https://releases.nixos.org/nix/nix-2.12.0/nix-2.12.0-x86

* Create build users (UID 3000-3032) and group (GID 3000)

* Create a directory tree in `/nix`

* Move the downloaded Nix into `/nix`

* Setup the default Nix profile

* Configure Nix daemon related settings with systemd

* Place the Nix configuration in `/etc/nix/nix.conf`

* Place channel configuration at `/root/.nix-channels`

* Configure the shell profiles

* Enable (and start) the systemd unit nix-daemon.socket

Proceed? (y/N): y

 INFO Step: Create directory `/home/nix`

 INFO Step: Create or overwrite file `/etc/systemd/system/nix-dir

 INFO Step: Create or overwrite file `/etc/systemd/system/nix.mou

 INFO Step: Create or overwrite file `/etc/systemd/system/ensure

 INFO Step: Enable (and start) the systemd unit ensure-symlinked

 INFO Step: Provision Nix

 INFO Step: Configure Nix

 INFO Step: Enable (and start) the systemd unit nix-daemon.socket

(deck@steamdeck ~)$. /nix/var/nix/profiles/default/etc/profile.d

(deck@steamdeck ~)$ nix run nixpkgs#hello

Hello, world!

Hate it? Uninstall it:

Our prototype has the working name of nix-installer. It supports

different installation ‘planners’ (such as the steam-deck), can be used as

a Rust library, has fine grained logging, and can uninstall a Nix it

installed.

It has no runtime dependencies (though it will try to sudo itself if you

forget) or build time dependencies (other than Rust/C compilers) and

should build trivially inside or outside Nix for x86_64 and aarch64, Linux

(glibc or musl based) and Mac.

We are currently distributing fully reproducible and hermetic nix based

experimental builds for all supported platforms. The installer is Open

Source (LGPL) and written in entirely in Rust. (Nix is still not in Rust —

sorry!)

You are welcome to explore the code here. Don’t worry, we’re excited to

talk about it at length in a future article. Stay tuned for more!

“We’ve been working with other installer working group contributors

like (alphabetical) Cole, Michael, Solène, Théophane, Travis, and

others to build nix-installer and better understand what a next-

generation Nix installer would look like, thank you so much for all

your help, hard work, and advice.”

Conclusion

We explored how the Steam Deck takes certain measures to protect

users from accidentally losing changes when the system updates and

(deck@steamdeck ~)$ /nix/nix-installer uninstall

https://github.com/DeterminateSystems/nix-installer
https://github.com/colemickens
https://github.com/mkenigs
https://dataswamp.org/~solene/index.html
https://github.com/thufschmitt
https://t-ravis.com/

swaps due to its A/B booting, we also explored how we can use

persistent systemd units to create a /nix path on the Steam Deck

which bind mounts to a persistent /home/nix directory. In order to

ensure that the units linked from the /nix path are loaded, we also

learnt we can have a unit which reloads the systemd daemon, and how

this resolves the issue.

Using these techniques, we successfully installed Nix on the Steam

Deck using both the traditional installer, as well as a prototype that

we’ve been working on.

SHARE

WRITTEN BY

Ana Hobden

Ana is a hacker working in the Rust and Nix ecosystems. She's from

Lək̓ ʷəŋən territory in the Pacific Northwest, and holds a B.Sc. in

Computer Science from the University of Victoria. She takes care of

a golden retriever named Nami with her partner.

Would you like access to

private flakes and FlakeHub

Cache?

Sign up for FlakeHub

https://twitter.com/intent/tweet?text=https://determinate.systems/posts/nix-on-the-steam-deck
https://www.linkedin.com/sharing/share-offsite/?url=https://determinate.systems/posts/nix-on-the-steam-deck
https://determinate.systems/people/ana-hobden
https://docs.determinate.systems/flakehub/private-flakes
https://docs.determinate.systems/flakehub/cache
https://docs.determinate.systems/flakehub/cache
https://flakehub.com/signup

Get the latest updates

hello@determinate.systems

+1 (641) NIX-HELP (649-4357)

© 2021-2025 Determinate Systems. All rights reserved.

Terms of service Privacy DMCA Code of conduct Security

Nix for Linux Nix for Enterprises Determinate Nix for Linux with SELinux

Nix for macOS on AWS EC2 Nix for macOS with Jamf Nix for macOS with MDM

Nix for macOS

Email address Subscribe

https://determinate.systems/rss.xml
https://discord.gg/invite/a4EcQQ8STr
https://github.com/determinatesystems
https://bsky.app/profile/determinate.systems
https://twitter.com/DeterminateSys
https://hachyderm.io/@determinatesystems
https://www.linkedin.com/company/determinate-systems
https://www.youtube.com/watch?v=wZBiRv3ixhU&t=118s
mailto:hello@determinate.systems
https://determinate.systems/policies/terms-of-service
https://determinate.systems/policies/privacy
https://determinate.systems/policies/dmca
https://determinate.systems/policies/code-of-conduct
https://determinate.systems/policies/security
https://determinate.systems/nix/linux
https://determinate.systems/nix/enterprise
https://determinate.systems/nix/selinux
https://determinate.systems/nix/macos/ec2
https://determinate.systems/nix/macos/jamf
https://determinate.systems/nix/macos/mdm
https://determinate.systems/nix/macos/overview

