
connet-dev / connet Public

1 Branch 3 Tags Go to file Go to file Code

ingon use consistent client D/S naming in the Readme 833f1a3 · 11 hours ago

certc more value serialization 2 weeks ago

client migrate to new org 4 days ago

cmd/connet fix error checks 2 days ago

control fix error checks 2 days ago

examples update README 3 days ago

logc cleanup control servers 2 weeks ago

model migrate to new org 4 days ago

netc fix error checks 2 days ago

notify specialized kv store; move to s… 3 weeks ago

pb migrate to new org 4 days ago

pbc migrate to new org 4 days ago

pbr migrate to new org 4 days ago

pbs migrate to new org 4 days ago

relay fix error checks 2 days ago

selfhosted migrate to new org 4 days ago

.envrc add nix package build 2 months ago

.gitignore release script 4 days ago

LICENSE Create LICENSE 2 months ago

Makefile migrate to new org 4 days ago

README.md use consistent client D/S namin… 11 hours ago

client.go require at least one destination … 2 days ago

default.nix use str instead of string for opti… 2 days ago

e2e_test.go migrate to new org 4 days ago

flake.lock update nixpkgs last month

flake.nix move module to top-level 2 days ago

go.mod migrate to new org 4 days ago

go.sum fix nix package 2 weeks ago

package.nix update readme 2 days ago

process-compose.yaml fix makefiles and process 2 months ago

About

A p2p reverse proxy with NAT
traversal. Inspired by frp, rathole
and ngrok

go # tunnel # proxy # udp # firewall # nat

p2p # reverse-proxy # frp # quic # rathole

 Readme

 Apache-2.0 license

 Activity

 Custom properties

 146 stars

 2 watching

 2 forks

Report repository

Releases 3

v0.3.0 Latest

16 hours ago

+ 2 releases

Packages

No packages published

Languages

Go 94.9% Nix 3.9%

Makefile 1.2%

Code Issues Pull requests Actions Projects Security Insights

https://github.com/connet-dev
https://github.com/connet-dev/connet
https://github.com/connet-dev/connet/branches
https://github.com/connet-dev/connet/tags
https://github.com/connet-dev/connet/branches
https://github.com/connet-dev/connet/tags
https://github.com/ingon
https://github.com/connet-dev/connet/commits?author=ingon
https://github.com/connet-dev/connet/commit/833f1a3e3acef0e385f4b5835bb898b304220ac0
https://github.com/connet-dev/connet/commit/833f1a3e3acef0e385f4b5835bb898b304220ac0
https://github.com/connet-dev/connet/tree/main/certc
https://github.com/connet-dev/connet/commit/871b1d74d86b999065cf810914c618f0edb22ce1
https://github.com/connet-dev/connet/tree/main/client
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/tree/main/cmd/connet
https://github.com/connet-dev/connet/tree/main/cmd/connet
https://github.com/connet-dev/connet/commit/35abedd908ce104dc54a7874e2b5d1b1c152132c
https://github.com/connet-dev/connet/tree/main/control
https://github.com/connet-dev/connet/commit/35abedd908ce104dc54a7874e2b5d1b1c152132c
https://github.com/connet-dev/connet/tree/main/examples
https://github.com/connet-dev/connet/commit/afd20ddb8e07e125ed401204d54aafdbb757e863
https://github.com/connet-dev/connet/tree/main/logc
https://github.com/connet-dev/connet/commit/0e8fbede9cef43dc08d4e44f72bc307eb541ecb5
https://github.com/connet-dev/connet/tree/main/model
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/tree/main/netc
https://github.com/connet-dev/connet/commit/35abedd908ce104dc54a7874e2b5d1b1c152132c
https://github.com/connet-dev/connet/tree/main/notify
https://github.com/connet-dev/connet/commit/d20b0e2ac9ed3e709c2f8d2ee2db0a73f7aa1db4
https://github.com/connet-dev/connet/commit/d20b0e2ac9ed3e709c2f8d2ee2db0a73f7aa1db4
https://github.com/connet-dev/connet/commit/d20b0e2ac9ed3e709c2f8d2ee2db0a73f7aa1db4
https://github.com/connet-dev/connet/tree/main/pb
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/tree/main/pbc
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/tree/main/pbr
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/tree/main/pbs
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/tree/main/relay
https://github.com/connet-dev/connet/commit/35abedd908ce104dc54a7874e2b5d1b1c152132c
https://github.com/connet-dev/connet/tree/main/selfhosted
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/blob/main/.envrc
https://github.com/connet-dev/connet/commit/97cb45a8db8c932b7ffa1877ba591360cd44cd32
https://github.com/connet-dev/connet/blob/main/.gitignore
https://github.com/connet-dev/connet/commit/516ba344e2569d11a4a871f713ae9e0592024e52
https://github.com/connet-dev/connet/blob/main/LICENSE
https://github.com/connet-dev/connet/commit/7bfe99e319337b3450971236d7ec5c10a446f59c
https://github.com/connet-dev/connet/blob/main/Makefile
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/blob/main/README.md
https://github.com/connet-dev/connet/commit/833f1a3e3acef0e385f4b5835bb898b304220ac0
https://github.com/connet-dev/connet/commit/833f1a3e3acef0e385f4b5835bb898b304220ac0
https://github.com/connet-dev/connet/commit/833f1a3e3acef0e385f4b5835bb898b304220ac0
https://github.com/connet-dev/connet/blob/main/client.go
https://github.com/connet-dev/connet/commit/61e43923728882e15d1ac285d7f18ce31a8696a4
https://github.com/connet-dev/connet/commit/61e43923728882e15d1ac285d7f18ce31a8696a4
https://github.com/connet-dev/connet/commit/61e43923728882e15d1ac285d7f18ce31a8696a4
https://github.com/connet-dev/connet/blob/main/default.nix
https://github.com/connet-dev/connet/commit/b3d4627ccabd54adba6feadaf0c6b03aa9597378
https://github.com/connet-dev/connet/commit/b3d4627ccabd54adba6feadaf0c6b03aa9597378
https://github.com/connet-dev/connet/commit/b3d4627ccabd54adba6feadaf0c6b03aa9597378
https://github.com/connet-dev/connet/blob/main/e2e_test.go
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/blob/main/flake.lock
https://github.com/connet-dev/connet/commit/d30a916ebec80d1c2c7ca969e97331cf176fe62c
https://github.com/connet-dev/connet/blob/main/flake.nix
https://github.com/connet-dev/connet/commit/713a168eb5e5ac02289b6a322ce92af0ad71bd6e
https://github.com/connet-dev/connet/blob/main/go.mod
https://github.com/connet-dev/connet/commit/ca81b38e5e99b4787354d1caa2d0b833cd08a12d
https://github.com/connet-dev/connet/blob/main/go.sum
https://github.com/connet-dev/connet/commit/9920a67ea121f0587efa72400c7ec06fa4968454
https://github.com/connet-dev/connet/blob/main/package.nix
https://github.com/connet-dev/connet/commit/00343501c591f112c1419c124821539484601b5d
https://github.com/connet-dev/connet/blob/main/process-compose.yaml
https://github.com/connet-dev/connet/commit/09c7054ebf51f41798f697d18a029e8799cefa8b
https://github.com/topics/go
https://github.com/topics/tunnel
https://github.com/topics/proxy
https://github.com/topics/udp
https://github.com/topics/firewall
https://github.com/topics/nat
https://github.com/topics/p2p
https://github.com/topics/reverse-proxy
https://github.com/topics/frp
https://github.com/topics/quic
https://github.com/topics/rathole
https://github.com/connet-dev/connet/activity
https://github.com/connet-dev/connet/activity
https://github.com/connet-dev/connet/custom-properties
https://github.com/connet-dev/connet/custom-properties
https://github.com/connet-dev/connet/stargazers
https://github.com/connet-dev/connet/stargazers
https://github.com/connet-dev/connet/watchers
https://github.com/connet-dev/connet/watchers
https://github.com/connet-dev/connet/forks
https://github.com/connet-dev/connet/forks
https://github.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fconnet-dev%2Fconnet&report=connet-dev+%28user%29
https://github.com/connet-dev/connet/releases
https://github.com/connet-dev/connet/releases
https://github.com/connet-dev/connet/releases
https://github.com/connet-dev/connet/releases/tag/v0.3.0
https://github.com/connet-dev/connet/releases
https://github.com/orgs/connet-dev/packages?repo_name=connet
https://github.com/connet-dev/connet/search?l=go
https://github.com/connet-dev/connet/search?l=nix
https://github.com/connet-dev/connet/search?l=makefile
https://github.com/connet-dev/connet
https://github.com/connet-dev/connet/issues
https://github.com/connet-dev/connet/pulls
https://github.com/connet-dev/connet/actions
https://github.com/connet-dev/connet/projects
https://github.com/connet-dev/connet/security
https://github.com/connet-dev/connet/pulse
https://github.com/connet-dev/connet/commits/main/

server.go fix error checks 2 days ago

releaserelease v0.3.0v0.3.0 go reportgo report A+A+ licenselicense Apache2.0Apache2.0

connet is a peer-to-peer reverse proxy for NAT traversal. It is inspired by ngrok, frp, rathole and others.

connet helps expose a service running on a device to another device on the internet. Unlike the others, the connet client runs on both the
device that exposes the service (called destination in connet's terms) and the device that wants to access the service (called source). This

means that communication between connet clients is never public and visible to the rest of the internet, and in many cases peers can
communicate directly.

Status connet is currently alpha software. We expect some issues and its APIs are subject to change.

Peer-to-peer communication Because you run the connet client on both the destination and the source , the server is only used for
sharing configuration. In many cases clients can communicate directly, which enables better privacy and performance.

Relay support There are cases when clients are unable to find a path to communicate directly. In such cases, they can use a relay server
to maintain connectivity.

Security Everything is private, encrypted with TLS. Public server and client certificates are exchanges between peers and are required
and verified to establish connectivity. Clients and relays need to present a mandatory token when communicating with the control server,
allowing tight control over who can use connet .

Embeddable In case you want connet running as part of another (golang) program (as opposed to a separate executable), connet has
a well defined api for running both the client and the server.

For all communication connet uses the QUIC protocol, which is build on top of UDP.

Latest builds of connet can be acquired from our releases page. If you are using NixOS, check also the NixOS section.

To get started with connet , you'll need 3 devices:

Server which your clients can communicate with. In most cases, this server will have a public IP and be directly accessible by clients. A
VPS instance at one of the many cloud providers goes a long way here.

Device D that has the destination service you want to connect to, running at port 3000 .

Device S (aka source) which you want to connect to the service, at port 8000 .

In the setup above, start connet server --config server.toml with the following server.toml :

connet

Features

Architecture

Quickstart

Server

[server]
tokens = ["client-d-token", "client-s-token"]

README Apache-2.0 license

https://github.com/connet-dev/connet/blob/main/server.go
https://github.com/connet-dev/connet/commit/35abedd908ce104dc54a7874e2b5d1b1c152132c
https://github.com/connet-dev/connet/releases
https://github.com/connet-dev/connet/releases
https://pkg.go.dev/github.com/connet-dev/connet
https://pkg.go.dev/github.com/connet-dev/connet
https://goreportcard.com/report/github.com/connet-dev/connet
https://goreportcard.com/report/github.com/connet-dev/connet
https://github.com/connet-dev/connet/blob/main/LICENSE
https://github.com/connet-dev/connet/blob/main/LICENSE
https://github.com/connet-dev/connet/releases
https://nixos.org/

To run a connet server, you'll need a TLS certificate. You have a few options to create such certificate:

Recommended use an ACME client to provision one for you. We've had good experiences running lego.

Buy a TLS certificate from a Certificate Authority like verisign, namecheap, etc.

Use a self-signed TLS certificate, an option most appropriate for testing.

To create a self-signed certificate, you can use openssl. Alternatively, you can use a tool like minica. When using self-signed certificate, you'll
need your clients (and relays) trusting the server's certificate. Copying the certificate (or CA) public key to the clients and using server-cas

configuration option is the easiest way to achieve this.

Then, on device D run connet --config client-d.toml with the following client-d.toml :

On device S run connet --config client-s.toml with the following client-s.toml :

You can use both a toml config file as well as command line when running connet . If you use both a config file and command line options, the
latter takes precence, overriding any config file options. For simplicity, command line options only support a single destination or source

configuration.

To run in client mode, use connet --config client-config.toml command. Here is the full client client-config.toml configuration spec:

cert-file = "cert.pem"

key-file = "key.pem"

TLS Certificates

Client D (aka the destination)

[client]
token = "client-d-token"

server-addr = "SERVER_IP:19190"

server-cas = "cert.pem"

[client.destinations.serviceA]

addr = ":3000"

Client S (aka the source)

[client]

token = "client-s-token"
server-addr = "SERVER_IP:19190"

server-cas = "cert.pem"

[client.sources.serviceA]

addr = ":8000"

Configuration

Client

[client]

token = "client-token-1" # the token which the client uses to authenticate against the control server

token-file = "path/to/relay/token" # a file that contains the token, one of token or token-file is required

server-addr = "localhost:19190" # the control server address to connect to

server-cas = "path/to/cert.pem" # the control server certificate
direct-addr = ":19192" # at what address this client listens for direct connections

[client.destinations.serviceX]

addr = "localhost:3000" # where this destination connects to, required
route = "any" # what kind of routes to use, `any` will use both `direct` and `relay`

[client.destinations.serviceY]
addr = "192.168.1.100:8000" # multiple destinations can be defined, they are matched by name at the server

https://acmeclients.com/
https://go-acme.github.io/lego/
https://github.com/jsha/minica

To run in server mode (e.g. running both control and a relay server), use connet server --config server-config.toml command. Here is

the full server server-config.toml configuration specification:

To run in control server mode, use connet control --config control-config.toml command. Here is the full control server control-
config.toml configuration specification:

To run in relay server mode, use connet relay --config relay-config.toml command. Here is the full relay server relay-config.toml

configuration specification:

route = "direct" # force only direct communication between clients

[client.sources.serviceX] # matches destinations.serviceX

addr = ":8000" # the address at which to listen for incoming connections to be forwarded

route = "relay" # the kind of route to use

[client.sources.serviceY] # both sources and destinations can be defined in a single file

addr = ":8001" # again, mulitple sources can be defined

route = "direct" # force only direct communication between clients, even if other end allows any

Server

[server]

tokens = ["client-token-1", "client-token-n"] # set of recognized client tokens

tokens-file = "path/to/client/tokens" # a file that contains a list of client tokens
one of tokens or tokens-file is required

addr = ":19190" # the address at which the control server will listen for connections, default to :19190
cert-file = "path/to/cert.pem" # the server certificate file, in pem format

key-file = "path/to/key.pem" # the server certificate private key file

relay-addr = ":19191" # the address at which the relay will listen for connectsion, defaults to :19191

relay-hostname = "localhost" # the public hostname (e.g. domain, ip address) which will be advertised to clients, def

store-dir = "path/to/server-store" # where does this server persist runtime information, defaults to a /tmp subdirect

Control server

[control]

client-tokens = ["client-token-1", "client-token-n"] # set of recognized client tokens
client-tokens-file = "path/to/client/tokens" # a file that contains a list of client tokens

one of client-tokens or client-tokens-file is required

relay-tokens = ["relay-token-1", "relay-token-n"] # set of recognized relay tokens
relay-tokens-file = "path/to/relay/token" # a file that contains a list of relay tokens

one of relay-tokens or relay-tokens-file is necessary when connecting relays

addr = ":19190" # the address at which the control server will listen for connections, default to :19190

cert-file = "path/to/cert.pem" # the server certificate file, in pem format

key-file = "path/to/key.pem" # the server certificate private key file

store-dir = "path/to/control-store" # where does this control server persist runtime information, defaults to a /tmp

Relay server

[relay]

token = "relay-token-1" # the token which the relay server uses to authenticate against the control server

token-file = "path/to/relay/token" # a file that contains the token, one of token or token-file is required

addr = ":19191" # the address at which the relay will listen for connectsion, defaults to :19191

hostname = "localhost" # the public hostname (e.g. domain, ip address) which will be advertised to clients, defaults

control-addr = "localhost:19190" # the control server address to connect to, defaults to localhost:19191

control-cas = "path/to/ca/file.pem" # the public certificate root of the control server, no default, required when us

store-dir = "path/to/relay-store" # where does this relay persist runtime information, defaults to a /tmp subdirector

connet servers (both control and relay servers) store runtime state on the file system. If you don't explicitly specify store-dir , they will use
a new subdirectory in /tmp by default, which means that every time they restart they'll loose any state and identity. To prevent this, you can

specify an explicit store-dir location, which can be reused between runs.

At the root of the config file, you can configure logging (connet uses slog internally):

On some systems, if you might see the following line in the logs:

In which case, we recommend visiting the wiki page and applying the recommended changes.

TBD

To configure the client as a service:

TBD

Storage

Logging

log-level = "info" # supports debug, info, warn, error, defaults to info
log-format = "text" # supports text and json, defaults to text

Tunning

failed to sufficiently increase receive buffer size (was: 208 kiB, wanted: 7168 kiB, got: 416 kiB). See

https://github.com/quic-go/quic-go/wiki/UDP-Buffer-Sizes for details.

NisOS

Flakes

flake.nix

{

 inputs = {
 # ...

 connet.url = "github.com/connet-dev/connet";

 };

 outputs = { connet, ... }: {
 nixosConfigurations.example = nixpkgs.lib.nixosSystem {

 system = "x86_64-linux";

 modules = [
 # ...

 connet.nixosModules.default

 {

 services.connet = {
 enable = true;

 package = connet.packages."x86_64-linux".default;

 tokenFile = "/run/keys/connet.token";
 serverAddr = "localhost:19190";

 sources.example.addr = ":9998";

 };
 }

];

 };

 };
}

Examples

https://github.com/quic-go/quic-go/wiki/UDP-Buffer-Sizes

If you want to use connet , but you don't want to run the server yourself, we have also built a hosted service at connet.dev. It is free when

clients connect directly, builds upon the open source components by adding account management and it is one of the easiest way to start.

Hosting

https://connet.dev/

