
16 Sep 2017

A SECURE CAPTIVE PORTAL
BROWSER WITH AUTOMATIC
DNS DETECTION

Captive portals are the worst.

Flaky detection. The OS and browser try to detect these annoying network
features but fail quite often, leaving you with broken connections.

DID YOU KNOW that probe-based captive portal detection really doesn't
work very well, with ~30% FP *and* ~30% FN rate in Chrome?

— Emily Stark (@estark37) 15 September 2017

Attack surface. Even if it worked reliably, you wouldn't want to use the OS
automatic captive portal browser for security reasons. Since it can be

triggered by a network attacker without user interaction, it's the perfect

https://filippo.io/
https://filippo.io/
https://twitter.com/estark37/status/908768529314308097?ref=words.filippo.io

target. It had vulnerabilities before and there is no information about

whether it's up to date and sandboxed. There's also no option to disable
Javascript or install security extensions.

DNS. I want to pick my own DNS server, and more speci�cally run my own
unbound, for a number of reasons: clean results, local zones, overrides,

DNSSEC... However most captive portals will block UDP tra�c to anything

except their DNS resolver (or would be trivially bypassed). So every time
getting past a captive portal involves opening Network Settings, removing

the custom DNS, logging in, and hopefully (that is, rarely) remember to put
the custom DNS server back in.

HTTP. Finally, since a captive portal literally relies on a MitM attack, it
results inaccessible when using HTTPS Everywhere in "Block all

unencrypted requests" mode.

To recap, logging in involves resetting the DNS server, opening an

Incognito window, enabling Javascript, maybe fumbling with cookies,

logging in, and reverting DNS settings.

Subscribe to Cryptography Dispatches for more!

Type your email...

Subscribe

A dedicated Chrome captive browser

To scratch this itch I decided to make my own captive portal browser

based on Chrome, such that it can be secure and con�gured as I please.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1800&ref=words.filippo.io

The main challenge is reaching the DHCP-provided captive portal DNS

resolver without changing system settings. Chrome lacks the ability to
con�gure DNS upstreams, but supports SOCKS5 which proxies name

resolution.

With 100 lines of Go I built a small SOCKS5 proxy based on

github.com/armon/go-socks5 that handles name resolution via a

custom net.Resolver that always dials a �xed IP for the DNS server.

It automatically discovers the DHCP DNS server on macOS with this
command:

ipconfig getoption en0 domain_name_server

Finally it starts a Chrome instance con�gured to use the SOCKS5 proxy with

the following command and waits for it to quit:

open -n -W -a "Google Chrome" --args \
--user-data-dir="$HOME/Library/Application Support/Google/Captive" \
--proxy-server="socks5://$PROXY" \
--host-resolver-rules="MAP * ~NOTFOUND , EXCLUDE localhost" \
--no-first-run --new-window --incognito \
http://example.com

The separate --user-data-dir allows it to run alongside your normal

Chrome instance, while still being (separately) con�gurable and --
incognito ensures that no state is preserved across executions.

The commands can be con�gured with a TOML �le to make the tool work

on other operating systems.

https://www.chromium.org/developers/design-documents/network-stack/socks-proxy?ref=words.filippo.io

Usage boils down to running captive-browser and logging into the

captive portal from a secure, con�gurable, ephemeral environment. All
without touching DNS settings.

Find the tool at github.com/FiloSottile/captive-browser and me on Twitter.

Subscribe to Cryptography Dispatches for more!

Type your email...

Subscribe

https://github.com/FiloSottile/captive-browser?ref=words.filippo.io
https://twitter.com/FiloSottile?ref=words.filippo.io

