
Deploying Containers on NixOS

Dec 03, 2024

Managing infrastructure on your own machine can be cumbersome and scary. Much of the

rhetoric out there would have you believe that it’s not possible or very dangerous to run and

manage your own server. There have been some great advances with tools like

containers(Docker and Podman) and NixOS that makes this easier than ever.

Why Bother with NixOS?

Most of my background is in DevOps and infrastructure. I set out to find the easiest way to

manage multiple websites and applications on my own servers. Installing and managing

Kubernetes seemed like a nightmare, and deploying with Docker Compose felt neither elegant

nor easy enough to justify using it.

Then I came across NixOS. I found a way to adapt it to meet my needs for managing different

application containers on a single machine—or even across a fleet. NixOS is a Linux

distribution that offers a unique approach: immutable and declarative builds. This allows you to

define the state of a machine in a single configuration file, which, as an infrastructure

professional, is something I really like.

This approach fits me because of how I think about software. I love being able to see

everything running on a machine in one place, defined declaratively. It enables you to create a

configuration for your machine and seamlessly apply it to the host.

Containers, Containers

I have considerable experience running containers in production environments, usually on

Kubernetes. Becuase of this, I prefer to package my software as a container. Many of my

workflows are built around the useage of containers.

Burak Kiran

yeah, it ain't no luck
Infrastructure

@Me Blog

https://bkiran.com/
https://bkiran.com/@me
https://bkiran.com/blog

For me, containers are simply a means to get things up and running in production quickly.

While I can easily get a Docker image of my software packaged, how can I get it running on

NixOS?

1. Setting up Virtualization and Podman

There is an option in NixOS called vitualization. This allows for all different types of

virtualization but we want to virtualize at the OS level(how Docker and Podman works). So

here we’re going to pick one to use and and enable it. I’m using Podman but you can choose

Docker if you like.

 virtualisation = {

 podman = {

 enable = true;

 };

 };

2. Adding Our Container

Okay so now that our virtualization is turned on, we want to start a container. We do that by

defining a option in virtualisation called oci-containers.containers . For each container we

want to run, we create and entry here. There are a few options that I always use:

image: Defines the container image we want to run.

environment: Define environment variables that you want to be exposed within the

container.

entrypoint: Define a command to run on container startup(if needed).

 virtualisation = {

 podman = {

 enable = true;

 };

 oci-containers.containers = {

 my-appication = {

 image = "myregistry.com/myApplication:latest";

 entrypoint = "/root/main";

 environment = {

 DEV_MODE = "false";

 };

 };

 };

 };

3. Private Registry, No Problem

Your container may not actually work at the previous step because it’s behind a private

registry. It’s good practice to put your containers behind one and if you do, you need a way to

authenticate. This is done using the login configuration.

 virtualisation = {

 podman = {

 enable = true;

 };

 oci-containers.containers = {

 my-appication = {

 login = {

 registry = "https://myregistry.com";

 username = "myRegistryUsername";

 passwordFile = "/root/registry-password.txt";

 };

 image = "myregistry.com/myApplication:latest";

 entrypoint = "/root/main";

 environment = {

 DEV_MODE = "false";

 };

 };

 };

 };

4. Opening it Up to the Outside

For things like web servers, we need a way to expose our container to the outside world. This

is achieved using ports on both the host and the container. First, we add the ports

configuration to our container setup. At this point, our container is accessible to the machine

itself. To make it accessible from outside the machine, we specify the following configuration:

networking.firewall.interfaces.ens4.allowedTCPPorts . The complete configuration will look like

this:

 networking.firewall.interfaces.ens4.allowedTCPPorts = [

 8090

];

 virtualisation = {

 podman = {

 enable = true;

 };

 oci-containers.containers = {

 my-appication = {

 login = {

 registry = "https://myregistry.com";

 username = "myRegistryUsername";

 passwordFile = "/root/registry-password.txt";

 };

 image = "myregistry.com/myApplication:latest";

 ports = ["8090:8000"];

 entrypoint = "/root/main";

 environment = {

 DEV_MODE = "false";

 };

 };

 };

 };

Interacting With Your Running Container

Containers are started as systemd processes. You can use systemd commands interact and

debug each running container. Also since our virutaulization is enabled, we can use our

Podman and Docker commands.

Here are my favorite tools for debugging my running services. Systemd processes are named

podmain-{container-name}.service so in our example it would be podman-my-appication.service

Starting, Stoping and Statuses

To get the current status of the application and last lines of logs we want to use the status

command. This is useful for doing a quick check on if anything failed or just getting the last

lines of logs.

systemctl status {service}

Let’s say you want to start and stop a process. We can use the respective start and stop

commands.

systemctl start {service}

systemctl stop {service}

The Process Journal

systemctl is a useful command but it does not show us all the logs. To be able to view all the

logs of a systemd serice, we need to use the journalctl .

journalctl -u {service} -b

Container Commands

To get a list of all the running podman services. Often times I use this command to get the

container ID.

podman ps

We can get more granular and specify the service name to get the ID of the container

podman ps -aqf "name={service}"

Often times, I’ll jump into the contain to run some one off command or dig through internals to

find an issue that I could not find on the logs exposed to the systemd service. We’ll do that

with the exec command and use a shell that’s avaliable in your container(in this example im

using sh).

podman exec -it {container-id} /bin/sh

What are You Waiting For?

NixOS has some great attributes, especially if you’re willing to invest the time to learn and

understand its configuration language. It’s the easiest Linux distribution I’ve used that allows

me to go from configuration to working container orchestration seamlessly while not loosing

sight that we’re running on Linux infrastructure. This also makes continuous deployment much

simpler—we’ll explore that in future posts.

Have questions about what you read?
Get in touch now

Contact Me Learn More →

Website

@Me Blog

Website is designed and built by Burak

https://bkiran.com/blog
https://bkiran.com/
https://bkiran.com/@me
https://bkiran.com/blog
https://bkiran.com/@me

