
Phoenix LiveView 1.0.0 is here!
Posted on December 3rd, 2024 by Chris McCord

LiveView 1.0.0 is out!

This 1.0 milestone comes six years after the first LiveView commit.

Why LiveView

I started LiveView to scratch an itch. I wanted to create dynamic

server-rendered applications without writing JavaScript. I was tired

of the inevitable ballooning complexity that it brings.

Think realtime form validations, updating the quantity in a shopping

cart, or real-time streaming updates. Why does it require moving

mountains to solve in a traditional stack? We write the HTTP glue

or GraphQL schemas and resolvers, then we figure out which

validation logic needs shared or dup’d. It goes on and on from there

– how do we get localization information to the client? What data

serializers do we need? How do we wire up WebSockets and IPC

back to our code? Is our js bundle getting too large? I guess it’s time

to start turning the Webpack or Parcel knobs. Wait Vite is a thing

now? Or I guess Bun configuration is what we want? We’ve all felt

this pain.

The idea was, what if we removed these problems entirely? HTTP

can go away, and the server can handle all the rendering and

Search

Search for... Search

Tags

CI
ML
bumbleebee
channels
elixirconf
generators
guides
liveview
nx
phoenix
pubsub
releases
testing
uploads

Recent Posts

Phoenix LiveView 1.0.0 is
here!
Phoenix LiveView 0.19
released
Phoenix 1.7.2 released

See all

https://www.phoenixframework.org/blog/tags/CI
https://www.phoenixframework.org/blog/tags/ML
https://www.phoenixframework.org/blog/tags/bumbleebee
https://www.phoenixframework.org/blog/tags/channels
https://www.phoenixframework.org/blog/tags/elixirconf
https://www.phoenixframework.org/blog/tags/generators
https://www.phoenixframework.org/blog/tags/guides
https://www.phoenixframework.org/blog/tags/liveview
https://www.phoenixframework.org/blog/tags/nx
https://www.phoenixframework.org/blog/tags/phoenix
https://www.phoenixframework.org/blog/tags/pubsub
https://www.phoenixframework.org/blog/tags/releases
https://www.phoenixframework.org/blog/tags/testing
https://www.phoenixframework.org/blog/tags/uploads
https://www.phoenixframework.org/blog/phoenix-liveview-1.0-released
https://www.phoenixframework.org/blog/phoenix-liveview-1.0-released
https://www.phoenixframework.org/blog/phoenix-liveview-0.19-released
https://www.phoenixframework.org/blog/phoenix-liveview-0.19-released
https://www.phoenixframework.org/blog/phoenix-1.7-2-released
https://www.phoenixframework.org/blog
https://www.phoenixframework.org/

dynamic update concerns. It felt like a heavy approach, but I knew

Elixir and Phoenix was perfectly suited for it.

Six years later this programming model still feels like cheating.

Everything is super fast. Payloads are tiny. Latency is best-in-class.

Not only do you write less code, there’s simply less to think about

when writing features.

Real-time foundations unlock superpowers

Interesting things happen when you give every user and UI a real-

time, bidirectional foundation as a matter of course. You suddenly

have superpowers. You almost don’t notice it. Being freed from all

the mundane concerns of typical full-stack development lets you

focus on just shipping features. And with Elixir, you start shipping

features that other platforms can’t even conceive as possible.

Want to ship real-time server logs to the js console in

development? No problem!

What about supporting production hot code upgrades where

browsers can auto re-render anytime CSS stylesheets, images, or

templates change – without losing state or dropping connections?

Sure!

0:00

0:00

https://fly.io/phoenix-files/phoenix-dev-blog-server-logs-in-the-browser-console/
https://fly.io/phoenix-files/phoenix-dev-blog-server-logs-in-the-browser-console/

Or maybe you have an app deployed planet-wide where you do

work across the cluster and aggregate the results in real-time back

to the UI. Would you believe the entire LiveView, including the

template markup and RPC calls, is 350 LOC?

These are the kinds of applications that LiveView enables. It feels

incredible to ship these kinds of things, but it took a while to arrive

here for good reasons. There was a lot to solve to make this

programming model truly great.

How it started

Conceptually, what I really wanted is something like what we do in

React – change some state, our template re-renders automatically,

and the UI updates. But instead of a bit of UI running on the client,

what if we ran it on the server? The LiveView could look like this:

defmodule ThermoLive do

 def render(assigns) do

 ~H"""

 <div id="thermostat">

 <p>Temperature: {@thermostat.temperature}</p>

 <p>Mode: {@thermostat.mode}</p>

 <button phx-click="inc">+</button>

 <button phx-click="dec">-</button>

 </div>

 """

 end

 def mount(%{"id" => id}, _session, socket) do

 thermostat = ThermoControl.get_thermostat!(id)

 :ok = ThermoControl.subscribe(thermostat)

0:00

https://github.com/fly-apps/wps/blob/0cd4f4d46e873b3a0937fe230d26f5a195687ecf/lib/wps_web/live/page_speed_live.ex

 {:ok, assign(socket, thermostat: thermostat)}

 end

 def handle_info({ThermoControl, %ThermoStat{} = new_the

 {:noreply, assign(socket, thermostat: new_thermo)}

 end

 def handle_event("inc", _, socket) do

 thermostat = ThermoControl.inc(socket.assigns.thermos

 {:noreply, assign(socket, thermostat: thermostat)}

 end

end

Like React, we have a render function and something that sets our

initial state when the LiveView mounts. When state changes, we

call render with the new state and the UI is updated.

Interactions like `phx-click` on the `+` or `-` button, can be sent

as RPC’s from client to server and the server can respond with fresh

page HTML. These client/server messages use Phoenix Channels

which scale to millions of connections per server.

Likewise, if the server wants to send an update to the client, such as

another user changing the thermostat, the client can listen for it and

replace the page HTML in the same fashion. My naive first pass on

the `phoenix_live_view.js` client looked something like this.

let main = document.querySelector("[phx-main]")

let channel = new socket.channel("lv")

channel.join().receive("ok", ({html}) => main.innerHTML =

channel.on("update", ({html}) => main.innerHTML = html)

window.addEventListener("click", e => {

 let event = e.getAttribute("phx-click")

 if(!event){ return }

 channel.push("event", {event}).receive("ok", ({html}) =

})

This is how LiveView started. We went to the server for

interactions, re-rendered the entire template on state change, and

https://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections

sent the entire page down to the client. The client then swapped

out the inner HTML.

It worked, but it was not great. Partial state changes required re-

executing the entire template and sending down gobs of HTML for

otherwise tiny updates.

Still the basic programming model was exactly what I wanted. As

HTTP fell away from my concerns, entire layers of full-stack

considerations disappeared.

Next the challenge was making this something truly great. Little did

we know we’d accidentally our way to outperforming many SPA

use-cases along the way.

How we optimized the programming model

LiveView’s diffing engine solved two problems with a single

mechanism. The first problem was only executing those dynamic

parts of a template that actually changed from a previous render.

The second was only sending the minimal data necessary to update

the client.

It solves both by splitting the template into static and dynamic

parts. Considering the following LiveView template:

~H"""

<p class={@mode}>Temperature: {format_unit(@temperature)}

"""

At compile time, we convert the template into a struct like this:

%Phoenix.LiveView.Rendered{

 static: ["<p class=\"", \">Temperature:", "</p>"]

 dynamic: fn assigns ->

 [

 if changed?(assigns, :mode), do: assigns.mode,

 if changed?(assigns, :temperature), do: format_unit

]

 end

}

We know the static parts never change, so they are split from the

dynamic Elixir expressions. Next, we compile each expression with

change tracking based on the variables accessed within each

expression. On render, we compare the previous template values

with the new and only execute the template expression if the value

has changed.

Instead of sending the entire template down on change, we can

send the client all the static and dynamic parts on `mount`. After

mount we only send the partial diff of dynamic values for each

update.

To see how this works, we can imagine the following payload being

sent on `mount` for the template above:

{

 s: ["<p class=\"", ">Temperature: ", "</p>"],

 0: "cooling",

 1: "68℉"

}

The client receives a map of static values in the `s` key, and

dynamic values keyed by their index in the statics. For the client to

render the full template string, it only needs to zips the static list

with the dynamic values. For example:

["<p class=\"", "cooling", "\">Temperature: ", "68℉", "</

"<p class=\"cooling\">Temperature: 68℉</p>"

With the client holding a static/dynamic cache, optimizing network

updates is no work at all. Any server render following `mount`

simply returns the new dynamic values at their known index.

Unchanged dynamic values and statics are ignored entirely.

If a LiveView runs `assign(socket, :temperature, 70)`, the

`render/1` function is invoked, and the following payload gets sent

down the wire:

{1: "70℉"}

Thats it! To update the UI, the client simply merges this object with

its static/dynamic cache:

{ {

 s: ["<p class=\"", ">Temperature:

 0: "cooling",

 1: "70F" => 1: "70℉"

} }

Then the data is zipped together on the client to produce the full

HTML of the UI.

Of course `innerHTML` updates blow away UI state and are

expensive to perform. So like any client-side framework, we

compute minimal DOM diffs to efficiently update the DOM. In fact,

we’ve had folks migrate from React to Phoenix LiveView because

LiveView client rendering was faster what their React app could

offer.

Optimizations continued from there. Including fingerprinting, for

comprehensions, tree sharing, and more. You can read all about

each optimization on the Dashbit blog.

We apply these optimizations automatically and for free thanks to

our stateful client and server connection. Most other server

rendered HTML solutions send the whole fragment on every update

or require users to fine tune updates by hand.

Best in class latency

https://podcast.thinkingelixir.com/156
https://podcast.thinkingelixir.com/156
https://dashbit.co/blog/latency-rendering-liveview
https://dashbit.co/blog/latency-rendering-liveview

We’ve seen how LiveView payloads are smaller than the best hand-

written JSON API or GraphQL query, but it’s even better than that.

Every LiveView holds a connection to the server so page navigation

happens via live navigation. TLS handshakes, current user auth, etc

happen a single time for the lifetime of the user’s visit. This allows

page navigation to happen via a single WebSocket frame, and fewer

database queries for any client action. The result is fewer round

trips from the client, and simply less work done by the server. This

provides less latency for the end-user compared to an SPA fetching

data or sending mutations up to a server.

Holding a stateful connections comes at the cost of server memory,

but it’s far cheaper than folks expect. At a baseline, a given channel

connection consumes 40kb of memory. This gives a 1GB server a

theoretical ceiling of ~25,000 concurrent LiveViews. Of course the

more state you store, the more memory you consume, but you only

hold onto the state you need. We also have `stream` primitives for

handling large collections without impacting memory. Elixir and the

Erlang VM were designed for this. Scaling a stateful system to

millions of concurrent users isn’t theoretical – we do it all the time.

See WhatsApp, Discord, or our own benchmarks as examples.

With the programming model optimized on both client and server,

we expanded into higher level building blocks that take advantage

of our unique diffing engine.

Reusable Components with HEEx

Change tracking and minimal diffs were ground-breaking features,

but our HTML templates still lacked composability. The best we

could offer is “partial”-like template rendering where a function

could encapsulate some partial template content. This works, but it

composes poorly and is mismatched in the way we write markup.

Fortunately Marlus Saraiva from the Surface project spearheaded

development of an HTML-aware component system and contributed

back to the LiveView project. With HEEx components, we have a

https://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections
https://surface-ui.org/

declarative component system, HTML validation, and compile-time

checking of component attributes and slots.

HEEx components are just annotated functions. They look like this:

@doc """

Renders a button.

Examples

 <.button>Send!</.button>

 <.button phx-click="go">Send!</.button>

"""

attr :type, :string, default: nil

attr :rest, :global, include: ~w(disabled form name value

slot :inner_block, required: true

def button(assigns) do

 ~H"""

 <button

 type={@type}

 class="rounded-lg bg-zinc-900 hover:bg-zinc-700 py-2

 {@rest}

 >

 {render_slot(@inner_block)}

 </button>

 """

end

An invalid call to a component, such as `<.button click="bad">`

produces a compile-time warning:

warning: undefined attribute "click" for component AppWeb

 lib/app_web/live/page_live.ex:123: (file)

Slots allows the component to accept arbitrary content from a

caller. This allows components to be much more extensible by the

caller without creating a bunch of bespoke partial templates to

handle every scenario.

Streamlined HEEx syntax

When we introduced HEEx and function components, we added a

new syntax for interpolating values within tag attributes along with

`:if` and `:for` conveniences for conditionally generating

templates. It looked like this:

<div :if={@some_condition?}>

 <li :for={val <- @values}>Value <%= val %>

</div>

Note the use of standard EEx `<%= %>` interpolation. With the

release of LiveView 1.0, we are extending the HTML-aware `{}`

attribute interpolation syntax to within tag bodies as well. This

means you can now interpolate values directly within the tag body

in a streamlined syntax:

<div :if={@some_condition?}>

 <li :for={val <- @values}>Value {val}

</div>

The EEx `<%= %>` remains supported and is required for generating

dynamic blocks of distinct markup, as well as for interpolating

values within `<script>` and `<style>` tags.

HEEx markup annotations

Gone are the days of examining your browser’s HTML and then

hunting for where that HTML was generated within your code. The

final browser markup can be rendered within several nested layers

of component calls. How do we quickly trace back who rendered

what?

HEEx solves this with a `debug_heex_annotations` configuration.

When set, all rendered markup will be annotated with the file:line

of the function component definition, as well as, the file:line of the

caller invocation of the component. In practice your dev HTML will

look like this in the browser inspector:

It annotates the document both at the caller site and the function

component definition. If you find the above hard to navigate, you can

use the new `Phoenix.LiveReloader` features that have your

editor jump to an element’s nearest caller or definition file:line

when clicked with a special key sequence of your choosing.

Let’s see it in action:

First, we can see how holding `c` while clicking jumped to the caller

file:Line location for that `<.button>` invocation. Next, we see that

holding `d` while clicking the button jumped to the function

definition file:line.

0:00

This is such a simple quality of life improvement. It will become a

key part of your workflow as soon as you try it out.

Interactive Uploads

A few years ago, LiveView tackled the file upload problem.

Something that should be easy has historically been unnecessarily

difficult. We wanted a single abstraction for interactive uploads for

both direct to cloud, and direct to server use-cases.

With a few lines of server code you can have file uploads with drag

and drop, file progress, selection pruning, file previews, and more.

More recently, we defined an `UploadWriter` behavior. This gives

you access to the raw upload stream as it’s being chunked by the

client. This lets you do things like stream uploads to a different

server or transcode a video as it’s being uploaded.

Since the uploads happen over the existing LiveView connection,

reflecting the upload progress or advanced file operations become

trivial to implement:

Streams and Async

Following uploads, we shipped a streams primitive for efficiently

handling large collections without needing to hold those collections

in server memory. We also introduced `assign_async` and

`start_async` primitives, which makes handling async operations

and rendering async results a breeze.

0:00

https://fly.io/phoenix-files/streaming-uploads-with-liveview/
https://fly.io/phoenix-files/streaming-uploads-with-liveview/
https://youtu.be/GICJ42OyBGg?si=8SaAL2Sh74qsFaI3&t=1930
https://github.com/fly-apps/thumbnail_generator/blob/ce7e2ede394eed3b2a1b1aa5e41d323643950f5e/lib/thumbs_web/live/home_live.ex
https://github.com/fly-apps/thumbnail_generator/blob/ce7e2ede394eed3b2a1b1aa5e41d323643950f5e/lib/thumbs_web/live/home_live.ex

For example, imagine you have an expensive operation that calls out

to an external service. The results can be latent or spotty, or both.

Your LiveView can use `assign_async/2` to offload this operation

to a new process and `<.async_result>` to render the results with

each loading, success, or failure state.

def render(assigns) do

 ~H"""

 <.async_result :let={org} assign={@org}>

 <:loading>Loading organization <.spinner /></:loading

 <:failed :let={_failure}>there was an error loading t

 {org.name}

 </.async_result>

 """

end

def mount(%{"slug" => slug}, _, socket) do

 {:ok, assign_async(:org, fn -> {:ok, %{org: fetch_org(s

end

Now instead of worrying about an async task crashing the UI, or

carefully monitoring async ops while updating the template with a

bunch of conditionals, you have a single abstraction for performing

the work and rendering the results. As soon as the LiveView

disconnects, the async processes are cleaned up, ensuring no

wasted resources go to a UI that is no longer around.

Here we can also see slots in action with the `<:loading>` and

`<:failed>` slots of the `<.async_result>` function component.

Slots allow the caller to extend components with their own dynamic

content, including their own markup and function component calls.

LiveView goes mainstream

LiveView and .NET Blazor both started about the same time. I like

to think both projects helped spearhead the adoption of this

programming model.

https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

Since getting started, this model has been embraced in various

ways in the Go, Rust, Java, PHP, JavaScript, Ruby, and Haskell

communities. And I’m sure others I haven’t yet heard of.

Most don’t offer LiveView’s declarative model. Instead developers

are required to annotate how individual elements are updated and

removed, leading to fragile applications, akin to client-side

applications before the introduction of React and other declarative

frameworks. Most also lack the optimizations LiveView developers

get for free. Large payloads are sent on every event unless

developers manually fine tune them.

React itself liked the idea of putting React on the server so much,

they shipped their own React Server Components to tackle a cross

section of similar goals with LiveView. In the case of RSC, pushing

real-time events are left to external means.

React, like most, chose different tradeoffs because they had no

choice. The majority skip the stateful, bidirectional communication

layer because most platforms are poorly suited for it. Elixir and the

Erlang VM are truly what make this programming model shine. And

we have only barely discussed our built-in globally distributed

clustering and PubSub. There are truly extraordinary features built

into the platform that are at your fingertips.

Try it out

Now is a great time to dive in and give LiveView a try! We have

launched `new.phoenixframework.org` which lets you get up and

running in seconds with Elixir and your first Phoenix project with a

single command:

For osx/linux:

$ curl https://new.phoenixframework.org/myapp | sh

For Windows PowerShell:

https://react.dev/reference/rsc/server-components

> curl.exe -fsSO https://new.phoenixframework.org/app.bat

For existing applications, check the changelog for breaking changes

to bring your existing apps up to speed.

What’s Next

Following this release, we’ll be continuing efforts around collocated

JavaScript hooks, enhancing Web Component integration,

supporting navigation guards, and more as outlined in our issue

tracker.

Special Thanks

Arriving here wouldn’t have been possible without the help of the

Phoenix team, especially Steffen Deusch, who has tackled countless

LiveView issues over the last year.

Happy Hacking!

–Chris

© 2024 phoenixframework.org | @elixirphoenix
DockYard offers expert Phoenix consulting for your projects

https://github.com/phoenixframework/phoenix_live_view/blob/main/CHANGELOG.md
https://twitter.com/elixirphoenix
https://dockyard.com/capabilities/elixir-consulting

