
Why TanStack Start is Ditching Adapters

by Tanner Linsley on Nov 22, 2024.

To “adapter” or not?

Building a new front-end Javascript framework is a daunting task, as I’ve been learning with building

TanStack Start, my new TanStack-powered full stack framework. There’s so many moving pieces:

Routing

Server Side Rendering

RPCs & APIs

Development Tools

Deployment & Hosting

That last one, deployment & hosting can be especially tricky, since these days it seems that every

single cloud environment has it’s own quirky incantations to get things to work “just right”. When faced

with this decision for TanStack Start, I obviously knew which hosts I wanted to start supporting out of the

gate and Vercel was at the top of that list.

My first gut-reaction was to start building a system that could have “adapters” for each host, then just

focus on writing the Vercel adapter first.

TanStack AUTO

https://tanstack.com/
https://x.com/tan_stack
https://bsky.app/profile/tanstack.com
https://instagram.com/tan_stack

This plan, however, was flawed from the start. It didn’t take long to realize that I personally was going to

be responsible (at least in the beginning) for writing most if not all of the code to make TanStack Start

come to life on not only Vercel, but many other targets and platforms. After some quick research, this task

alone was daunting enough to make me question my motivations in building a server-bound JS framework

at all.

Technically, the work required to deploy to Vercel alone is already very simple by just adhering to some

output file/directory naming conventions. However the paralysis came from just the sheer number of

environments/hosts there are to support. There’s a lot! Just look at Remix’s growing list of server

adapters! Remix isn’t the only framework with this list either. Most server-bound JS frameworks have

something similar. I was essentially committing to writing at least 10 adapters in the first few months of

the framework and I had barely gotten into the exciting features of the framework itself (not to mention

the work in maintaining and updating these adapters).

The harsh reality here is that there isn’t a way around this. If your framework is providing any server-

targeted code in your framework, you need to ensure it will run perfectly anywhere you can

deploy it.

So, as I was about to succumb to the infinite sadness of writing a hundred adapters and dealing with

upstream breaking changes for the rest of my life, I spoke with my friend Ryan Carniato about how Solid JS

is approaching this problem with our cousin framework Solid Start and he confidently said “Just use Vinxi”.

Vinxi = Nitro + H3 + Vite

Vinxi is a “JavaScript toolkit to build full stack apps and frameworks with your own opinions”, powered

by Nitro and Vite. So what makes it so special?

There are a ton of awesome features in Vinxi that make it extremely useful for building a framework, but

one of the coolest pieces is that it’s powered by Nitro, H3 and Vite. Nitro’s tagline is literally “create web

servers with everything you need and deploy them wherever you prefer” (emphasis is mine).

In simple terms, Nitro effectively makes TanStack Start “adapter-less”. It uses H3, an HTTP framework that

maintains its own lower-level adapters on your behalf so you can write your server code once and use it

anywhere (sounds a lot like React!).

By using Vinxi (which uses Nitro, H3 and Vite under the hood), all of TanStack Start’s adapter problems

were gone. I never even had to think about them!

In fact, to deploy to Vercel, it was even easier than I had initially planned: just pass a vercel target to our

defineConfig ’s server.preset option (which uses Vinxi):

jsx

https://remix.run/docs/en/main/other-api/adapter
https://remix.run/docs/en/main/other-api/adapter
https://twitter.com/ryancarniato
https://start.solidjs.com/
https://github.com/nksaraf/vinxi
https://nitro.unjs.io/
https://vite.dev/

What does it support?

Vinxi, Nitro, H3 and Vite are impressive to say the least. We were pleased to see that on our first try, a

slew of Vercel features worked perfectly out of the box including the GitHub integration, server functions,

edge functions/middleware, immutable deploys, environment variables, server-side rendering, and even

streaming.

That’s a massive list that we essentially got for free by using Vinxi and friends.

TanStack Start is coming!

With builds and deployments solved and built-in support for integrating my GitHub repos right into to my

personal favorite hosting providers, I could finally focus on what I think makes TanStack Start special:

A best-in-class fully type-safe Router

Flexible primitives for building server-bound RPCs

Opt-in Server Functionality (SSR, APIs, RSCs, etc)

And deep integration with other TanStack primitives like TanStack Query

And even more to come!

Going the Extra Mile

It’s awesome that we were able to offload so much to Vinxi and gain so many awesome features, but it’s

definitely not a 100% complete solution to using every feature of a hosting platform, especially Vercel

where we have access to more than just deployments. We’ve also been thinking more about features like

edge network caching and my personal favorite, *skew protection.*

For instance, skew protection, which ensures that client and server stay in sync for their respective

deployments requires more than just a build step. It involves the ability to deeply integrate platform

primitives into the framework at runtime as well, or in the specific case, being able to inject specific

cookies or headers into outgoing API/server requests directed at Vercel.

import { defineConfig } from '@tanstack/start/config'

export default defineConfig({

 server: {

 preset: 'vercel',

 },

})

jsx

https://vercel.com/docs/edge-network/caching
https://vercel.com/docs/deployments/skew-protection

I’m happy to report that TanStack Start is going to ship with amazingly powerful middleware primitives (for

both API routes and Server Function RPCs) that will make this a one-liner, or possibly even automatic

(hopefully).

This level of DX and integration is what makes me excited for the future and I believe is what open source

is truly about: composing powerful tools from the ecosystem together to deliver amazing experiences for

both developer and user.

I couldn’t think of a better mashup than TanStack Start, Vinxi (and friends) and Vercel to give you a best-

in-class web app experience.

Try it in 60 seconds

TanStack Start is currently in Beta! Click the "Deploy" button below to both create and deploy a fresh copy

of the TanStack Start “Basic” template to Vercel in ~1 minute.

We hope you enjoy what we’re building and can’t wait to get your feedback!

Edit on GitHub

https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Ftanstack%2Frouter%2Ftree%2Fmain%2Fexamples%2Freact%2Fbasic-file-based&project-name=my-tanstack-project&repository-name=my-tanstack-project
https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Ftanstack%2Frouter%2Ftree%2Fmain%2Fexamples%2Freact%2Fbasic-file-based&project-name=my-tanstack-project&repository-name=my-tanstack-project
https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Ftanstack%2Frouter%2Ftree%2Fmain%2Fexamples%2Freact%2Fbasic-file-based&project-name=my-tanstack-project&repository-name=my-tanstack-project
https://github.com/tanstack/tanstack.com/tree/main/app/blog/why-tanstack-start-is-ditching-adapters.md

