
Philippe Gaultier

Body of work Tags Resume LinkedIn Github

Atom feed

� Back to all articles Published on 2024-11-10

Way too many ways to
wait on a child process
with a timeout

Unix Signals C

Linux FreeBSD

Illumos MacOS

Table of contents

What are we building?

First way: old-school sigsuspend

Second way: sigtimedwait

Third approach: Self-pipe trick

A simpler self-pipe trick

Fourth approach: Linux's signalfd

Fifth approach: process descriptors

Sixth approach: MacOS's and BSD's kqueue

A parenthesis: libkqueue

Another parenthesis: Solaris/Illumos's ports

Seventh approach: Linux's io_uring

Eigth approach: Threads

https://gaultier.github.io/blog/body_of_work.html
https://gaultier.github.io/blog/articles-by-tag.html
https://github.com/gaultier/resume/raw/master/Philippe_Gaultier_resume_en.pdf
https://www.linkedin.com/in/philippegaultier/
https://github.com/gaultier
https://gaultier.github.io/blog/feed.xml
https://gaultier.github.io/blog
https://gaultier.github.io/blog/articles-by-tag.html#unix
https://gaultier.github.io/blog/articles-by-tag.html#signals
https://gaultier.github.io/blog/articles-by-tag.html#c
https://gaultier.github.io/blog/articles-by-tag.html#linux
https://gaultier.github.io/blog/articles-by-tag.html#freebsd
https://gaultier.github.io/blog/articles-by-tag.html#illumos
https://gaultier.github.io/blog/articles-by-tag.html#macos

Nineth approach: Active polling.

Conclusion

Addendum: The code

Windows is not covered at all in this article.

Discussions: /r/programming, HN, Lobsters

I often need to launch a program in the terminal in a retry loop.

Maybe because it's flaky, or because it tries to contact a remote

service that is not available. A few scenarios:

ssh to a (re)starting machine.

psql to a (re)starting database.

Ensuring that a network service started fine with netcat .

File system commands over NFS.

It's a common problem, so much so that there are two utilities that

I usually reach for:

timeout from GNU coreutils, which launches a command with a

timeout (useful if the command itself does not have a --timeout

option).

eb which runs a command with a certain number of times with an

exponential backoff. That's useful to avoid hammering a server

with connection attempts for example.

This will all sound familiar to people who develop distributed

systems: they have long known that this is best practice to retry

https://old.reddit.com/r/programming/comments/1godk0x/way_too_many_ways_to_wait_on_a_child_process_with/
https://news.ycombinator.com/item?id=42103200
https://lobste.rs/s/2awfwc/way_too_many_ways_wait_on_child_process
https://www.gnu.org/software/coreutils/manual/html_node/timeout-invocation.html
https://github.com/rye/eb
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

an operation:

With a timeout (either constant or adaptive).

A bounded number of times e.g. 10.

With a waiting time between each retry, either a constant one or

a increasing one e.g. with exponential backoff.

With jitter, although this point also seemed the least important

since most of us use non real-time operating systems which

introduce some jitter anytime we sleep or wait on something with

a timeout. The AWS article makes a point that in highly

contended systems, the jitter parameter is very important, but

for the scope of this article I'll leave it out.

This is best practice in distributed systems, and we often need to

do the same on the command line. But the two aforementioned tools

only do that partially:

timeout does not retry.

eb does not have a timeout.

So let's implement our own that does both! As we'll see, it's much

less straightforward, and thus more interesting, than I thought.

It's a whirlwind tour through Unix deeps. If you're interested in

systems programming, Operating Systems, multiplexed I/O, data

races, weird historical APIs, and all the ways you can shoot

yourself in the foot with just a few system calls, you're in the

right place!

What are we building?

I call the tool we are building ueb for: micro exponential

backoff. It does up to 10 retries, with a waiting period in between

that starts at an arbitrary 128 ms and doubles every retry. The

timeout for the subprocess is the same as the sleep time, so that

it's adaptive and we give the subprocess a longer and longer time

to finish successfully. These numbers would probably be exposed as

command line options in a real polished program, but there's no

time, what have to demo it:

This returns immediately since it succeeds on the first try.

$ ueb true

This retries 10 times since the command always fails, waiting

more and more time between each try, and finally returns the last

exit code of the command (1).

$ ueb false

This retries a few times (~ 4 times), until the waiting time

exceeds the duration of the sub-program. It exits with `0` since

from the POV of our program, the sub-program finally finished in

its alloted time.

$ ueb sleep 1

Run a program that prints the date and time, and exits with a

random status code, to see how it works.

$ ueb sh -c 'date --iso-8601=ns; export R=$(($RANDOM % 5)); echo

$R; exit $R'

2024-11-10T15:48:49,499172093+01:00

4

2024-11-10T15:48:49,628818472+01:00

3

2024-11-10T15:48:49,886557676+01:00

4

2024-11-10T15:48:50,400199626+01:00

3

2024-11-10T15:48:51,425937132+01:00

2

2024-11-10T15:48:53,475565645+01:00

2

2024-11-10T15:48:57,573278508+01:00

1

2024-11-10T15:49:05,767338611+01:00

0

Some more practical examples.

$ ueb ssh <some_ip>

$ ueb createdb my_great_database -h 0.0.0.0 -U postgres

If you want to monitor the retries and the sleeps, you can use

strace or dtrace :

$ strace ueb sleep 1

Note that the sub-command should be idempotent, otherwise we might

create a given resource twice, or the command might have succeeded

right after our timeout triggered but also right before we killed

it, so our program thinks it timed out and thus need to be retried.

There is this small data race window, which is completely fine if

the command is idempotent but will erroneously retry the command to

the bitter end otherwise. There is also the case where the sub-

command does stuff over the network for example creating a

resource, it succeeds, but the ACK is never received due to network

issues. The sub-command will think it failed and retry. Again,

fairly standard stuff in distributed systems but I thought it was

worth mentioning.

So how do we implement it?

Immediately, we notice something: even though there are a bazillion

ways to wait on a child process to finish (wait , wait3 , wait4 ,

waitid , waitpid), none of them take a timeout as an argument. This

has sparked numerous questions online (1, 2), with in my opinion

unsatisfactory answers. So let's explore this rabbit hole.

We'd like the pseudo-code to be something like:

1 wait_ms := 128

2

3 for retry in 0..<10:

4 child_pid := run_command_in_subprocess(cmd)

5

6 ret := wait_for_process_to_finish_with_timeout_ms(child_pid,

wait_ms)

7 if (did_process_finish_successfully(ret)):

8 exit(0)

9

10 // In case of a timeout, we need to kill the child process

and retry.

11 kill(child_pid, SIGKILL)

12

13 // Reap zombie process to avoid a resource leak.

14 waitpid(child_pid)

https://stackoverflow.com/questions/18542089/how-to-wait-on-child-process-to-finish-with-time-limit
https://stackoverflow.com/questions/18476138/is-there-a-version-of-the-wait-system-call-that-sets-a-timeout

15

16 sleep_ms(wait_ms);

17

18 wait_ms *= 2;

19

20 // All retries exhausted, exit with an error code.

21 exit(1)

There is a degenerate case where the give command to run is wrong

(e.g. typo in the parameters) or the executable does not exist, and

our program will happily retry it to the bitter end. But there is

solace: this is bounded by the number of retries (10). That's why

we do not retry forever.

First way: old-school sigsuspend

That's how timeout from coreutils implements it. This is quite

simple on paper:

1. We opt-in to receive a SIGCHLD signal when the child processes

finishes with: signal(SIGCHLD, on_chld_signal) where

on_chld_signal is a function pointer we provide. Even if the

signal handler does not do anything in this case.

2. We schedule a SIGALARM signal with alarm or more preferably

setitimer which can take a duration in microseconds whereas

alarm can only handle seconds. There's also

timer_create/timer_settime which handles nanoseconds. It depends

what the OS and hardware support.

3. We wait for either signal with sigsuspend which suspends the

https://git.savannah.gnu.org/gitweb/?p=coreutils.git;a=blob;f=src/timeout.c;h=5600ce42957dcf117785f6a361ef72ac9c2df352;hb=HEAD

program until a given set of signals arrive.

4. We should not forget to wait on the child process to avoid

leaving zombie processes behind.

The reality is grimmer, looking through the timeout

implementation:

We could have inherited any signal mask from our parent so we

need to explicitly unblock the signals we are interested in.

Signals can be sent to a process group we need to handle that

case.

We have to avoid entering a 'signal loop'.

Our process can be implicitly multi-threaded due to some

timer_settime implementations, therefore a SIGALRM signal sent

to a process group, can be result in the signal being sent

multiple times to a process (I am directly quoting the code

comments from the timeout program here).

When using timer_create , we need to take care of cleaning it up

with timer_delete , lest we have a resource leak when retrying.

The signal handler may be called concurrently and we have to be

aware of that.

Depending on the timer implementation we chose, we are

susceptible to clock adjustments for example going back. E.g.

setitimer only offers the CLOCK_REALTIME clock option for

counting time, which is just the wall clock. We'd like something

like CLOCK_MONOTONIC or CLOCK_MONOTONIC_RAW (the latter being

Linux specific).

So... I don't love this approach:

I find signals hard. It's basically a global goto to a

completely different location.

A signal handler is forced to use global mutable state, which is

better avoided if possible, and it does not play nice with

threads.

Lots of functions are not 'signal-safe', and that has led to

security vulnerabilities in the past e.g. in ssh. In short, non-

atomic operations are not signal safe because they might be

suspended in the middle, thus leaving an inconsistent state

behind. Thus, we have to read documentation very carefully to

ensure that we only call signal safe functions in our signal

handler, and cherry on the cake, that varies from platform to

platform, or even between libc versions on the same platform.

Signals do not compose well with other Unix entities such as

file descriptors and sockets. For example, we cannot poll on

signals. There are platform specific solutions though, keep on

reading.

Different signals have different default behaviors, and this

gets inherited in child processes, so you cannot assume anything

in your program and have to be very defensive. Who knows what

the parent process, e.g. the shell, set as the signal mask? If

you read through the whole implementation of the timeout

program, a lot of the code is dedicated to setting signal masks

in the parent, forking, immediately changing the signal mask in

the child and the parent, etc. Now, I believe modern Unices

offer more control than fork() about what signal mask the child

should be created with, so maybe it got better. Still, it's a

lot of stuff to know.

https://www.qualys.com/2024/07/01/cve-2024-6387/regresshion.txt

They are many libc functions and system calls relating to

signals and that's a lot to learn. A non-exhaustive list e.g. on

Linux: kill(1), alarm(2), kill(2), pause(2), sigaction(2),

signalfd(2), sigpending(2), sigprocmask(2), sigsuspend(2),

bsd_signal(3), killpg(3), raise(3), siginterrupt(3),

sigqueue(3), sigsetops(3), sigvec(3), sysv_signal(3), signal(7) .

Oh wait, I forgot sigemptyset(3) and sigaddset(3) . And I'm sure

I forgot about a few!

So, let's stick with signals for a bit but simplify our current

approach.

Second way: sigtimedwait

Wouldn't it be great if we could wait on a signal, say, SIGCHLD ,

with a timeout? Oh look, a system call that does exactly that and

is standardized by POSIX 2001. Cool! I am not quite sure why the

timeout program does not use it, but we sure as hell can. My only

guess would be that they want to support old Unices pre 2001, or

non POSIX systems.

Anyways, here's a very straightforward implementation:

1 #define _GNU_SOURCE

2 #include <errno.h>

3 #include <signal.h>

4 #include <stdint.h>

5 #include <sys/wait.h>

6 #include <unistd.h>

7

8 void on_sigchld(int sig) { (void)sig; }

9

10 int main(int argc, char *argv[]) {

11 (void)argc;

12 signal(SIGCHLD, on_sigchld);

13

14 uint32_t wait_ms = 128;

15

16 for (int retry = 0; retry < 10; retry += 1) {

17 int child_pid = fork();

18 if (-1 == child_pid) {

19 return errno;

20 }

21

22 if (0 == child_pid) { // Child

23 argv += 1;

24 if (-1 == execvp(argv[0], argv)) {

25 return errno;

26 }

27 __builtin_unreachable();

28 }

29

30 sigset_t sigset = {0};

31 sigemptyset(&sigset);

32 sigaddset(&sigset, SIGCHLD);

33

34 siginfo_t siginfo = {0};

35

36 struct timespec timeout = {

37 .tv_sec = wait_ms / 1000,

38 .tv_nsec = (wait_ms % 1000) * 1000 * 1000,

39 };

40

41 int sig = sigtimedwait(&sigset, &siginfo, &timeout);

42 if (-1 == sig && EAGAIN != errno) { // Error

43 return errno;

44 }

45 if (-1 != sig) { // Child finished.

46 if (WIFEXITED(siginfo.si_status) && 0 ==

WEXITSTATUS(siginfo.si_status)) {

47 return 0;

48 }

49 }

50

51 if (-1 == kill(child_pid, SIGKILL)) {

52 return errno;

53 }

54

55 if (-1 == wait(NULL)) {

56 return errno;

57 }

58

59 usleep(wait_ms * 1000);

60 wait_ms *= 2;

61 }

62 return 1;

63 }

I like this implementation. It's pretty easy to convince ourselves

looking at the code that it is obviously correct, and that's a very

important factor for me.

We still have to deal with signals though. Could we reduce their

imprint on our code?

Third approach: Self-pipe trick

This is a really nifty, quite well known trick at this point, where

we bridge the world of signals with the world of file descriptors

with the pipe(2) system call.

Usually, pipes are a form of inter-process communication, and here

we do not want to communicate with the child process (since it

could be any program, and most programs do not get chatty with

their parent process). What we do is: in the signal handler for

SIGCHLD , we simply write (anything) to our own pipe. We know this

is signal-safe so it's good.

And you know what's cool with pipes? They are simply a file

descriptor which we can poll . With a timeout. Nice! Here goes:

1 #define _GNU_SOURCE

2 #include <errno.h>

3 #include <poll.h>

https://cr.yp.to/docs/selfpipe.html

4 #include <signal.h>

5 #include <stdint.h>

6 #include <sys/wait.h>

7 #include <unistd.h>

8

9 static int pipe_fd[2] = {0};

10 void on_sigchld(int sig) {

11 (void)sig;

12 char dummy = 0;

13 write(pipe_fd[1], &dummy, 1);

14 }

15

16 int main(int argc, char *argv[]) {

17 (void)argc;

18

19 if (-1 == pipe(pipe_fd)) {

20 return errno;

21 }

22

23 signal(SIGCHLD, on_sigchld);

24

25 uint32_t wait_ms = 128;

26

27 for (int retry = 0; retry < 10; retry += 1) {

28 int child_pid = fork();

29 if (-1 == child_pid) {

30 return errno;

31 }

32

33 if (0 == child_pid) { // Child

34 argv += 1;

35 if (-1 == execvp(argv[0], argv)) {

36 return errno;

37 }

38 __builtin_unreachable();

39 }

40

41 struct pollfd poll_fd = {

42 .fd = pipe_fd[0],

43 .events = POLLIN,

44 };

45

46 // Wait for the child to finish with a timeout.

47 poll(&poll_fd, 1, (int)wait_ms);

48

49 kill(child_pid, SIGKILL);

50 int status = 0;

51 wait(&status);

52 if (WIFEXITED(status) && 0 == WEXITSTATUS(status)) {

53 return 0;

54 }

55

56 char dummy = 0;

57 read(pipe_fd[0], &dummy, 1);

58

59 usleep(wait_ms * 1000);

60 wait_ms *= 2;

61 }

62 return 1;

63 }

So we still have one signal handler but the rest of our program

does not deal with signals in any way (well, except to kill the

child when the timeout triggers, but that's invisible).

There are a few catches with this implementation:

Contrary to sigtimedwait , poll does not give us the exit status

of the child, we have to get it with wait . Which is fine.

In the case that the timeout fired, we kill the child process.

However, the child process, being forcefully ended, will result

in a SIGCHLD signal being sent to our program. Which will then

trigger our signal handler, which will then write a value to the

pipe. So we need to unconditionally read from the pipe after

killing the child and before retrying. If we only read from the

pipe if the child ended by itself, that will result in the pipe

and the child process being desynced.

In some complex programs, we'd have to use ppoll instead of

poll . ppoll prevents a set of signals from interrupting the

polling. That's to avoid some data races (again, more data

races!). Quoting from the man page for pselect which is

analogous to ppoll :

The reason that pselect() is needed is that if one

wants to wait for either a signal or for a file

descriptor to become ready, then an atomic test is

needed to prevent race conditions. (Suppose the

signal handler sets a global flag and returns.

Then a test of this global flag followed by a call

of select() could hang indefinitely if the signal

arrived just after the test but just before the

call. By contrast, pselect() allows one to first

block signals, handle the signals that have come

in, then call pselect() with the desired sigmask,

avoiding the race.)

So, this trick is clever, but wouldn't it be nice if we could avoid

signals entirely?

A simpler self-pipe trick

An astute reader pointed out that this trick can be simplified to

not deal with signals at all and instead leverage two facts:

A child inherits the open file descriptors of the parent

(including the ones from a pipe)

When a process exits, the OS automatically closes its file

descriptors

Behind the scenes, at the OS level, there is a reference count for

a file descriptor shared by multiple processes. It gets decremented

https://hachyderm.io/@markd/113461301892152667

when doing close(fd) or by a process terminating. When this count

reaches 0, it is closed for real. And you know what system call can

watch for a file descriptor closing? Good old poll !

So the improved approach is as follows:

1. Each retry, we create a new pipe.

2. We fork.

3. The parent closes the write end pipe and the child closes the

read end pipe. Effectively, the parent owns the read end and the

child owns the write end.

4. The parent polls on the read end.

5. When the child finishes, it automatically closes the write end

which in turn triggers an event in poll .

6. We cleanup before retrying (if needed)

So in a way, it's not really a self-pipe, it's more precisely a

pipe between the parent and the child, and nothing gets written or

read, it's just used by the child to signal it's done when it

closes its end. Which is a useful approach for many cases outside

of our little program.

Here is the code:

1 #define _GNU_SOURCE

2 #include <errno.h>

3 #include <poll.h>

4 #include <stdint.h>

5 #include <sys/wait.h>

6 #include <unistd.h>

7

8 int main(int argc, char *argv[]) {

9 (void)argc;

10

11 uint32_t wait_ms = 128;

12

13 for (int retry = 0; retry < 10; retry += 1) {

14 int pipe_fd[2] = {0};

15 if (-1 == pipe(pipe_fd)) {

16 return errno;

17 }

18

19 int child_pid = fork();

20 if (-1 == child_pid) {

21 return errno;

22 }

23

24 if (0 == child_pid) { // Child

25 // Close the read end of the pipe.

26 close(pipe_fd[0]);

27

28 argv += 1;

29 if (-1 == execvp(argv[0], argv)) {

30 return errno;

31 }

32 __builtin_unreachable();

33 }

34

35 // Close the write end of the pipe.

36 close(pipe_fd[1]);

37

38 struct pollfd poll_fd = {

39 .fd = pipe_fd[0],

40 .events = POLLHUP | POLLIN,

41 };

42

43 // Wait for the child to finish with a timeout.

44 poll(&poll_fd, 1, (int)wait_ms);

45

46 kill(child_pid, SIGKILL);

47 int status = 0;

48 wait(&status);

49 if (WIFEXITED(status) && 0 == WEXITSTATUS(status)) {

50 return 0;

51 }

52

53 close(pipe_fd[0]);

54

55 usleep(wait_ms * 1000);

56 wait_ms *= 2;

57 }

58 return 1;

59 }

Voila, no signals and no global state!

Fourth approach: Linux's signalfd

This is a short one: on Linux, there is a system call that does

exactly the same as the self-pipe trick: from a signal, it gives us

a file descriptor that we can poll . So, we can entirely remove our

pipe and signal handler and instead poll the file descriptor that

signalfd gives us.

Cool, but also....Was it really necessary to introduce a system

call for that? I guess the advantage is clarity.

I would prefer extending poll to support things other than file

descriptors, instead of converting everything a file descriptor to

be able to use poll .

Ok, next!

Fifth approach: process descriptors

Recommended reading about this topic: 1 and 2.

In the recent years (starting with Linux 5.3 and FreeBSD 9), people

realized that process identifiers (pid s) have a number of

problems:

PIDs are recycled and the space is small, so collisions will

happen. Typically, a process spawns a child process, some work

happens, and then the parent decides to send a signal to the PID

of the child. But it turns out that the child already terminated

https://lwn.net/Articles/801319/
https://lwn.net/Articles/794707/

(unbeknownst to the parent) and another process took its place

with the same PID. So now the parent is sending signals, or

communicating with, a process that it thinks is its original

child but is in fact something completely different. Chaos and

security issues ensue. Now, in our very simple case, that would

not really happen, but perhaps the root user is running our

program, or, imagine that you are implementing the init process

with PID 1, e.g. systemd: you can kill any process on the

machine! Or think of the case of re-parenting a process. Or

sending a certain PID to another process and they send a signal

to it at some point in the future. It becomes hairy and it's a

very real problem.

Data races are hard to escape (see the previous point).

It's easy to accidentally send a signal to all processes with

kill(0, SIGKILL) or kill(-1, SIGKILL) if the developer has not

checked that all previous operations succeeded. This is a

classic mistake:

1 int child_pid = fork(); // This fork fails and returns -1.

2 ... // (do not check that fork succeeded);

3 kill(child_pid, SIGKILL); // Effectively: kill(-1, SIGKILL)

And the kernel developers have worked hard to introduce a better

concept: process descriptors, which are (almost) bog-standard file

descriptors, like files or sockets. After all, that's what sparked

our whole investigation: we wanted to use poll and it did not work

on a PID. PIDs and signals do not compose well, but file

descriptors do. Also, just like file descriptors, process

descriptors are per-process. If I open a file with open() and get

the file descriptor 3 , it is scoped to my process. Another process

can close(3) and it will refer to their own file descriptor, and

not affect my file descriptor. That's great, we get isolation, so

bugs in our code do not affect other processes.

So, Linux and FreeBSD have introduced the same concepts but with

slightly different APIs (unfortunately), and I have no idea about

other OSes:

A child process can be created with clone3(..., CLONE_PIDFD)

(Linux) or pdfork() (FreeBSD) which returns a process descriptor

which is almost like a normal file descriptor. On Linux, a

process descriptor can also be obtained from a PID with

pidfd_open(pid) e.g. after a normal fork was done (but there is

a risk of a data race in some cases!). Once we have the process

descriptor, we do not need the PID anymore.

We wait on the process descriptor with poll(..., timeout) (or

select , or epoll , etc).

We kill the child process using the process descriptor with

pidfd_send_signal (Linux) or close (FreeBSD) or pdkill

(FreeBSD).

We wait on the zombie child process again using the process

descriptor to get its exit status.

And voila, no signals! Isolation! Composability! (Almost) No PIDs

in our program! Life can be nice sometimes. It's just unfortunate

that there isn't a cross-platform API for that.

Here's the Linux implementation:

1 #define _GNU_SOURCE

2 #include <errno.h>

3 #include <poll.h>

4 #include <stdint.h>

5 #include <sys/syscall.h>

6 #include <sys/wait.h>

7 #include <unistd.h>

8

9 int main(int argc, char *argv[]) {

10 (void)argc;

11

12 uint32_t wait_ms = 128;

13

14 for (int retry = 0; retry < 10; retry += 1) {

15 int child_pid = fork();

16 if (-1 == child_pid) {

17 return errno;

18 }

19

20 if (0 == child_pid) { // Child

21 argv += 1;

22 if (-1 == execvp(argv[0], argv)) {

23 return errno;

24 }

25 __builtin_unreachable();

26 }

27

28 // Parent.

29

30 int child_fd = (int)syscall(SYS_pidfd_open, child_pid, 0);

31 if (-1 == child_fd) {

32 return errno;

33 }

34

35 struct pollfd poll_fd = {

36 .fd = child_fd,

37 .events = POLLHUP | POLLIN,

38 };

39 // Wait for the child to finish with a timeout.

40 if (-1 == poll(&poll_fd, 1, (int)wait_ms)) {

41 return errno;

42 }

43

44 if (-1 == syscall(SYS_pidfd_send_signal, child_fd, SIGKILL,

NULL, 0)) {

45 return errno;

46 }

47

48 siginfo_t siginfo = {0};

49 // Get exit status of child & reap zombie.

50 if (-1 == waitid(P_PIDFD, (id_t)child_fd, &siginfo,

WEXITED)) {

51 return errno;

52 }

53

54 if (WIFEXITED(siginfo.si_status) && 0 ==

WEXITSTATUS(siginfo.si_status)) {

55 return 0;

56 }

57

58 wait_ms *= 2;

59 usleep(wait_ms * 1000);

60

61 close(child_fd);

62 }

63 }

A small note: To poll a process descriptor, Linux wants us to use

POLLIN whereas FreeBSD wants us to use POLLHUP . So we use POLLHUP

| POLLIN since there are no side-effects to use both.

Another small note: a process descriptor, just like a file

descriptor, takes up resources on the kernel side and we can reach

some system limits (or even the memory limit), so it's good

practice to close it as soon as possible to free up resources. For

us, that's right before retrying. On FreeBSD, closing the process

descriptor also kills the process, so it's very short, just one

system call. On Linux, we need to do both.

Sixth approach: MacOS's and BSD's kqueue

It feels like cheating, but MacOS and the BSDs have had kqueue for

decades which works out of the box with PIDs. It's a bit similar to

poll or epoll on Linux:

1 #include <errno.h>

2 #include <signal.h>

3 #include <stdint.h>

4 #include <sys/event.h>

5 #include <sys/wait.h>

6 #include <unistd.h>

7

8 int main(int argc, char *argv[]) {

9 (void)argc;

10

11 uint32_t wait_ms = 128;

12 int queue = kqueuex(KQUEUE_CLOEXEC);

13

14 for (int retry = 0; retry < 10; retry += 1) {

15 int child_pid = fork();

16 if (-1 == child_pid) {

17 return errno;

18 }

19

20 if (0 == child_pid) { // Child

21 argv += 1;

22 if (-1 == execvp(argv[0], argv)) {

23 return errno;

24 }

25 __builtin_unreachable();

26 }

27

28 struct kevent change_list = {

29 .ident = child_pid,

30 .filter = EVFILT_PROC,

31 .fflags = NOTE_EXIT,

32 .flags = EV_ADD | EV_CLEAR,

33 };

34

35 struct kevent event_list = {0};

36

37 struct timespec timeout = {

38 .tv_sec = wait_ms / 1000,

39 .tv_nsec = (wait_ms % 1000) * 1000 * 1000,

40 };

41

42 int ret = kevent(queue, &change_list, 1, &event_list, 1,

&timeout);

43 if (-1 == ret) { // Error

44 return errno;

45 }

46 if (1 == ret) { // Child finished.

47 int status = 0;

48 if (-1 == wait(&status)) {

49 return errno;

50 }

51 if (WIFEXITED(status) && 0 == WEXITSTATUS(status)) {

52 return 0;

53 }

54 }

55

56 kill(child_pid, SIGKILL);

57 wait(NULL);

58

59 change_list = (struct kevent){

60 .ident = child_pid,

61 .filter = EVFILT_PROC,

62 .fflags = NOTE_EXIT,

63 .flags = EV_DELETE,

64 };

65 kevent(queue, &change_list, 1, NULL, 0, NULL);

66

67 usleep(wait_ms * 1000);

68 wait_ms *= 2;

69 }

70 return 1;

71 }

The only surprising thing, perhaps, is that a kqueue is stateful,

so once the child process exited by itself or was killed, we have

to remove the watcher on its PID, since the next time we spawn a

child process, the PID will very likely be different. kqueue

offers the flag EV_ONESHOT , which automatically deletes the event

from the queue once it has been consumed by us. However, it would

not help in all cases: if the timeout triggers, no event was

consumed, and we have to kill the child process, which creates an

event in the queue! So we have to always consume/delete the event

from the queue right before we retry, with a second kevent call.

That's the same situation as with the self-pipe approach where we

unconditionally read from the pipe to 'clear' it before retrying.

I love that kqueue works with every kind of Unix entity: file

descriptor, pipes, PIDs, Vnodes, sockets, etc. Even signals!

However, I am not sure that I love its statefulness. I find the

poll API simpler, since it's stateless. But perhaps this behavior

is necessary for some corner cases or for performance to avoid the

linear scanning that poll entails? It's interesting to observe

that Linux's epoll went the same route as kqueue with a similar

API, however, epoll can only watch plain file descriptors.

A parenthesis: libkqueue

kqueue is only for MacOS and BSDs....Or is it?

There is this library, libkqueue, that acts as a compatibility

layer to be able to use kqueue on all major operating systems,

mainly Windows, Linux, and even Solaris/Illumos!

So...How do they do it then? How can we, on an OS like Linux, watch

a PID with the kqueue API, when the OS does not support that

functionality (neither with poll or epoll)? Well, the solution is

actually very simple:

On Linux 5.3+, they use pidfd_open + poll/epoll . Hey, we just

did that a few sections above!

On older versions of Linux, they handle the signals, like GNU's

timeout . It has a number of known shortcomings which is

testament to the hardships of using signals. To just quote one

piece:

https://github.com/mheily/libkqueue

Because the Linux kernel coalesces SIGCHLD (and

other signals), the only way to reliably determine

if a monitored process has exited, is to loop

through all PIDs registered by any kqueue when we

receive a SIGCHLD. This involves many calls to

waitid(2) and may have a negative performance

impact.

Another parenthesis: Solaris/Illumos's ports

So, if it was not enough that each major OS has its own way to

watch many different kinds of entities (Windows has its own thing

called I/O completion ports, MacOS & BSDs have kqueue , Linux has

epoll), Solaris/Illumos shows up and says: Watch me do my own

thing. Well actually I do not know the chronology, they might in

fact have been first, and some Illumos kernel developers (namely

Brian Cantrill in the fabulous Cantrillogy) have admitted that it

would have been better for everyone if they also had adopted

kqueue .

Anyways, their own system is called port (or is it ports?) and it

looks so similar to kqueue it's almost painful. And weirdly, they

support all the different kinds of entities that kqueue supports

except PIDs! And I am not sure that they support process

descriptors either e.g. pidfd_open . However, they have an

extensive compatibility layer for Linux so perhaps they do there.

Seventh approach: Linux's io_uring

https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://www.youtube.com/watch?v=wTVfAMRj-7E
https://www.illumos.org/man/3C/port_create

io_uring is the last candidate to enter the already packed ring

(eh) of different-yet-similar ways to do 'I/O multiplexing',

meaning to wait with a timeout on various kinds of entities to do

interesting 'stuff'. We queue a system call e.g. wait , as well as

a timeout, and we wait for either to complete. If wait completed

first and the exit status is a success, we exit. Otherwise, we

retry. Familiar stuff at this point. io_uring essentially makes

every system call asynchronous with a uniform API. That's exactly

what we want! io_uring only exposes waitid and only in very recent

versions, which is completely fine.

Incidentally, this approach is exactly what liburing does in a

unit test.

Alternatively, we can only queue the waitid and use

io_uring_wait_cqe_timeout to mimick poll(..., timeout) :

1 #define _DEFAULT_SOURCE

2 #include <liburing.h>

3 #include <sys/wait.h>

4 #include <unistd.h>

5

6 int main(int argc, char *argv[]) {

7 (void)argc;

8

9 struct io_uring ring = {0};

10 if (io_uring_queue_init(2, &ring,

11 IORING_SETUP_SINGLE_ISSUER |

12 IORING_SETUP_DEFER_TASKRUN) < 0)

{

https://github.com/axboe/liburing/blob/fd3e498/test/waitid.c#L58

13 return 1;

14 }

15

16 uint32_t wait_ms = 128;

17

18 for (int retry = 0; retry < 10; retry += 1) {

19 int child_pid = fork();

20 if (-1 == child_pid) {

21 return errno;

22 }

23

24 if (0 == child_pid) { // Child

25 argv += 1;

26 if (-1 == execvp(argv[0], argv)) {

27 return errno;

28 }

29 __builtin_unreachable();

30 }

31

32 struct io_uring_sqe *sqe = NULL;

33

34 // Queue `waitid`.

35 sqe = io_uring_get_sqe(&ring);

36 siginfo_t si = {0};

37 io_uring_prep_waitid(sqe, P_PID, (id_t)child_pid, &si,

WEXITED, 0);

38 sqe->user_data = 1;

39

40 io_uring_submit(&ring);

41

42 struct __kernel_timespec ts = {

43 .tv_sec = wait_ms / 1000,

44 .tv_nsec = (wait_ms % 1000) * 1000 * 1000,

45 };

46 struct io_uring_cqe *cqe = NULL;

47

48 int ret = io_uring_wait_cqe_timeout(&ring, &cqe, &ts);

49

50 // If child exited successfully: the end.

51 if (ret == 0 && cqe->res >= 0 && cqe->user_data == 1 &&

52 WIFEXITED(si.si_status) && 0 ==

WEXITSTATUS(si.si_status)) {

53 return 0;

54 }

55 if (ret == 0) {

56 io_uring_cqe_seen(&ring, cqe);

57 } else {

58 kill(child_pid, SIGKILL);

59 // Drain the CQE.

60 ret = io_uring_wait_cqe(&ring, &cqe);

61 io_uring_cqe_seen(&ring, cqe);

62 }

63

64 wait(NULL);

65

66 wait_ms *= 2;

67 usleep(wait_ms * 1000);

68 }

69 return 1;

70 }

The only difficulty here is in case of timeout: we kill the child

directly, and we need to consume and discard the waitid entry in

the completion queue. Just like kqueue .

One caveat for io_uring: it's only supported on modern kernels

(5.1+).

Another caveat: some cloud providers e.g. Google Cloud disable

io_uring due to security concerns when running untrusted code. So

it's not ubiquitous.

Eigth approach: Threads

Readers have pointed out that threads are also a solution, albeit a

suboptimal one. Here's the approach:

1. Spawn a thread, it will be in charge of spawning the child

process, storing the child PID in a global thread-safe variable

(e.g. protected by a mutex). It then wait s on the child in a

blocking way.

2. If the child exits, wait will return the status, which is also

written in a global thread-safe variable, and the thread ends.

https://news.ycombinator.com/vote?id=42107420&how=up&auth=20ac3216e63a60ca250d82b6a051d7dfaa9f18c9&goto=item%3Fid%3D42103200#42107420

3. In the main thread, wait on the other thread with a timeout,

e.g. with pthread_timedjoin_np .

4. If the child did not exit successfully, this is the same as

usual: kill, wait, sleep, and retry.

If the threads library supports returning a value from a thread,

like pthread or C11 threads do, that could be used to return the

exit status of the child to simplify the code a bit.

Also, we could make the thread spawning logic a bit more efficient

by not spawning a new thread for each retry, if we wanted to.

Instead, we communicate with the other thread with a queue or such

to instruct it to spawn the child again. It's more complex though.

Now, this approach works but is kind of cumbersome (as noted by the

readers), because threads interact in surprising ways with signals

(yay, another thing to watch out for!) so we may have to set up

signal masks to block/ignore some, and we must take care of not

introducing data-races due to the global variables.

Unless the problem is embarassingly parallel and the threads share

nothing (e.g.: dividing an array into pieces and each thread gets

its own piece to work on), I am reminded of the adage: "You had two

problems. You reach out for X. You now have 3 problems". And

threads are often the X.

Still, it's a useful tool in the toolbox.

Nineth approach: Active polling.

That's looping in user code with micro-sleeping to actively poll on

the child status in a non-blocking way, for example using wait(...,

WNOHANG) . Unless you have a very bizzare use case and you know

what you are doing, please do not do this. This is unnecessary, bad

for power consumption, and all we achieve is noticing late that the

child ended. This approach is just here for completeness.

Conclusion

I find signals and spawning child process to be the hardest parts

of Unix. Evidently this is not a rare opinion, looking at the

development in these areas: process descriptors, the various

expansions to the venerable fork with vfork , clone , clone3 ,

clone6 , a bazillion different ways to do I/O multiplexing, etc.

So what's the best approach then in a complex program? Let's recap:

If you need maximum portability and are a Unix wizard, you can

use sigsuspend .

If you are not afraid of signals, want a simpler API that still

widely supported, and the use case is very specific (like ours),

you can use sigtimedwait .

If you favor correctness and work with recent Linux and FreeBSD

versions, you can use process descriptors with shims to get the

same API on both OSes. That's probably my favorite option if

it's applicable.

If you only care about MacOS and BSDs (or accept to use

libkqueue on Linux), you can use kqueue because it works out of

the box with PIDs, you avoid signals completely, and it's used

in all the big libraries out of there e.g. libuv .

If you only care about bleeding edge Linux, are already using

io_uring in your code, and are bold enough to add wait support

to io_uring , you can use io_uring (once you have merged it in

mainline Linux!).

If you only care about Linux and are afraid of using io_uring ,

you can use signalfd + poll .

I often look at complex code and think: what are the chances that

this is correct? What are the chances that I missed something? Is

there a way to make it simplistic that it is obviously correct? And

how can I limit the blast of a bug I wrote? Will I understand this

code in 3 months? When dealing with signals, I was constantly

finding weird corner cases and timing issues leading to data races.

You would not believe how many times I got my system completely

frozen while writing this article, because I accidentally fork-

bombed myself or simply forgot to reap zombie processes.

And to be fair to the OS developers that have to implement them: I

do not think they did a bad job! I am sure it's super hard to

implement! It's just that the whole concept and the available APIs

are very easy to misuse. It's a good illustration of how a good

API, the right abstraction, can enable great programs, and a poor

API, the wrong abstraction, can be the root cause of various bugs

in many programs for decades.

And OS developers have noticed and are working on new, better

abstractions!

Process descriptors seem to me so straightforward, so obviously

correct, that I would definitely favor them over signals. They

simply remove entire classes of bugs. If these are not available to

me, I would perhaps use kqueue instead (with libkqueue emulation

when necessary), because it means my program can be extended easily

to watch for over types of entities and I like that the API is very

straightforward: one call to create the queue and one call to use

it.

Finally, I regret that there is so much fragmentation across all

operating systems. Perhaps io_uring will become more than a

Linuxism and spread to Windows, MacOS, the BSDs, and Illumos in the

future?

Addendum: The code

The code is available here. It does not have any dependencies

except libc (well, and libkqueue for kqueue.c). All of these

programs are in the worst case 27 KiB in size, with debug symbols

enabled and linking statically to musl. They do not allocate any

memory themselves. For comparison, eb has 24 dependencies and is

1.2 MiB! That's roughly 50x times more.

� Back to all articles

If you enjoy what you're reading, you want to support

me, and can afford it: Support me. That allows me to

write more cool articles!

https://github.com/gaultier/c/tree/master/ueb
https://github.com/rye/eb
https://gaultier.github.io/blog
https://paypal.me/philigaultier?country.x=DE&locale.x=en_US

This blog is open-source! If you find a problem,

please open a Github issue. The content of this blog

as well as the code snippets are under the BSD-3

License which I also usually use for all my personal

projects. It's basically free for every use but you

have to mention me as the original author.

https://github.com/gaultier/blog
https://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_(%22BSD_License_2.0%22,_%22Revised_BSD_License%22,_%22New_BSD_License%22,_or_%22Modified_BSD_License%22)
https://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_(%22BSD_License_2.0%22,_%22Revised_BSD_License%22,_%22New_BSD_License%22,_or_%22Modified_BSD_License%22)

