
Back to Blog

Australia/Lord_Howe is the weirdest

timezone

Timezones are weird. But only finitely so. Here's the exact conceptual model you

should have of them.

Ulysse Carion

Cofounder and CTO, SSOReady

The standard trope when talking about timezones is to rattle off falsehoods

programmers believe about them. These lists are only somewhat enlightening – it’s

really hard to figure out what truth is just from the contours of falsehood.

So here’s an alternative approach. I’m gonna show you some weird timezones. In

fact, the weirdest timezones. They’re each about as weird as timezones are

allowed to get in some way.

`Asia/Kathmandu` has a weird offset from UTC

`Africa/Casablanca` doesn’t fit into the timezone model cleanly, so it’s hard-

coded

`America/Nuuk` does daylight savings at -01:00 (yes, with a negative)

and `Africa/Cairo` and `America/Santiago` do it at 24 o’clock (not 0

o’clock)

`Australia/Lord_Howe`, population 382 and some notable stick bugs, has the

weirdest daylight savings rule

To learn how their weirdness is represented in software, we’ll look at the raw

timezone files that all software ultimately relies on. From there, two things will

become clear:

Yeah, this stuff is weird

But only finitely so, because ultimately a computer’s gotta implement them

https://ssoready.com/
https://ssoready.com/blog/
https://x.com/ucarion
https://github.com/ucarion
https://en.wikipedia.org/wiki/Dryococelus_australis

But first, an aside on the calendar.

PGXIIREAM: Pope Gregory XIII

rules everything around me

Unless you’re doing some fairly exotic things where you’re finding yourself saying

things like

“Oh yeah the OCR on Japanese driving licenses pops out things like “�� 8”,

that’s just how they sometimes say 1996 over there. That’s why we have this in

the parser:

eras = { "��": 1912, "��": 1926, "��": 1989 }

One of these days we’ll need to add `"��": 2019`, but it hasn’t come up yet.”

or

“We’re gonna need to set up a per-country feature flag when deciding whether

banks are closed for Eid. Saudi Arabia and Iran don’t agree on when the lunar

month starts.”

Then yeah, sure, you may need to write software that knows about the Japanese or

Islamic calendar systems.

Cases like this are a small minority. The reality of the world is that the Western

system of timekeeping is the dominant one, and even in e.g. Japan and the Muslim

world, almost everyone who uses computers is familiar with the Gregorian system.

With computers, we project the Gregorian system into the future and past, which is

called the proleptic Gregorian calendar and isn’t historically accurate but nobody

really cares except Russian revolution nerds.

This calendar system is pretty much good enough, and barring any rationalist

coups d’etat, is the one we’ll be stuck with for a long time. It does one thing well:

it’s very good at keeping the sun at the same place in the sky across the years. It

doesn’t let the months drift around the seasons like the Roman calendar did.

https://en.wikipedia.org/wiki/Japanese_era_name
https://www.economist.com/middle-east-and-africa/2019/06/06/when-is-eid-al-fitr
https://www.economist.com/middle-east-and-africa/2019/06/06/when-is-eid-al-fitr
https://en.wikipedia.org/wiki/Old_Style_and_New_Style_dates
https://en.wikipedia.org/wiki/French_Republican_calendar
https://en.wikipedia.org/wiki/French_Republican_calendar

Technically, this “keep the sun roughly in the same place whenever it’s the same

time-of-day” is called “mean solar time”. And that’s why GMT, Greenwich Mean

Time, is called that way. It’s about the mean solar time of the English observatory

in Greenwich.

By the way, we technically don’t call it GMT anymore. Unless you’re talking about

what time people in London say it is, you probably technically mean UTC.

Coordinated Universal Time is basically just a modern formalization of GMT. It’s

useful because almost everyone on the planet has agreed to base their clocks off

of an offset from UTC. It’s still a solar mean time, but the connection to Greenwich

isn’t really there anymore.

I bring this up because you may have heard of a weird modern quirk on Pope

Gregory’s sun-following endeavors:

Leap seconds don’t matter

The Earth’s rotation is slowing down. Days are getting longer. So you need to

correct for it if you want to keep IRL days in sync with computer days.

The nerd task force assigned to this problem is the International Earth Rotation and

Reference Systems Service, which has two primary goals:

1. Watch the Earth rotate, and report back on their findings

https://en.wikipedia.org/wiki/Royal_Observatory,_Greenwich
https://en.wikipedia.org/wiki/Royal_Observatory,_Greenwich
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/International_Earth_Rotation_and_Reference_Systems_Service
https://en.wikipedia.org/wiki/International_Earth_Rotation_and_Reference_Systems_Service

2. Break Wikipedia’s CSS with their long name

timecops

If the days are getting longer, and they’re doing so at a fairly unpredictable rate,

the simplest solution is to have IERS occasionally just insert an extra second in the

day to make clocks go slower. It’s called a leap second.

You should completely ignore the fact that this is a thing. It’s a cool novelty, but it’s

effectively just a detail you can ignore, because:

1. It’s not like programming languages support representing 61-second minutes

anyway

2. You (and by you I mean your cloud provider) can just run your clocks slower

around the time of the leap second, and pretend to everyone else over NTP

that their clocks are running fast. This is called leap smearing.

Btw it’s called UTC (Universal Time Coordinated? huh?) because the same folks

who publish UTC also publish UT1, which is UTC sans the leap seconds. There were

other UTs before the Coordinated variant came up.

Weird time zones

https://en.wikipedia.org/wiki/Leap_second
https://go.dev/play/p/9RwZu2jmlPl
https://go.dev/play/p/9RwZu2jmlPl
https://en.wikipedia.org/wiki/Network_Time_Protocol

OK! Let’s start looking at some weird time zones, and find out how your computer

knows to represent them.

`Asia/Kathmandu` is on a weird offset

Most of the world is on a whole number of hours before or after UTC. About a fifth

the world by population is on a half-hour offset from UTC; in particular, India is

5h30m ahead of UTC.

Nepal is 5h45m ahead of UTC:

$ TZ=UTC date ; TZ=Asia/Kathmandu date

Tue Jul 30 23:52:11 UTC 2024

Wed Jul 31 05:37:11 +0545 2024

If you’re like me, you must be have at one point wondered how in the world your

computer knows this fact.

Here’s a hint:

$ TZ=Asia/Kathmandu strace -e trace=openat date

...

openat(AT_FDCWD, "/usr/share/zoneinfo/Asia/Kathmandu", O_RDONLY|O_CLOEXEC) = 3

Wed Jul 31 05:40:49 +0545 2024

On your filesystem is a database called the IANA Timezone Database, aka tzdb or

zoneinfo. It’s a bunch of binary files, encoded in Timezone Information Format. The

names of those files act as timezone identifiers, which is where you see strings like

`America/Los_Angeles` or `Europe/London` come from:

$ tree /usr/share/zoneinfo

...

├── America

│ ├── Los_Angeles

├── Europe

│ ├── London

...

https://www.rfc-editor.org/rfc/rfc8536.html

At the very end of `/usr/share/zoneinfo/Asia/Kathmandu` is this little string:

cat /usr/share/zoneinfo/Asia/Kathmandu

...

<+0545>-5:45

The syntax is here pretty obtuse, but what it means is:

“Unless otherwise specified, UTC is 5h45m behind this timezone. Call this time

`+0545`.”

That’s precisely how software can figure out the time in Nepal. That’s also why the

output from `date` above has `+0545` in it.

Why strings like `PDT` or `CET` are pretty

meaningless

In the example above, `+0545` is called a “designator”. It’s a pretty-ish string

describing which part of a timezone a timestamp is in. It’s meant to be used for

outputting timestamps, and is only unambiguous if you already know what

timezone the timestamp was taken in.

Just how ambiguous are these designators? I wrote a `tzdump` script that converts

TZIF files to JSON. Here’s the top hits:

find -L /usr/share/zoneinfo -type f \

 | xargs -n1 ./tzdump \

 | jq -r '"\(.ID)\t\(.Transitions[].LocalTimeType.Designation)"' \

 | sort | uniq | sort -k 2 | uniq -f 1 -c | sort -n | awk '{ print $1 "\t" $3

The most popular designators are:

66 CST

58 CDT

56 CET

56 CEST

A total of 66 timezones use `CST`, either in the past or future. Many timezones

are functionally exact clones of each other – there’s no difference between

`America/Phoenix` and `America/Creston`, but they each get their own file – but still.

There’s a lot of ambiguity in there.

In case you’re curious, only 33 designators are unique to a timezone. A lot more

are functionally unique, but I’m too lazy to dedupe logically-equivalent timezones

right now.

As an extra fun bit of trivia, designators are not strictly uppercase/numeric. `ChST`,

appearing in `Pacific/Saipan`, stands for Chamorro Standard Time. It’s the only

designator with a lowercase name. `CHST` is not taken, sadly for those of us who

love bugs.

How are timezones with DST represented?

When we looked at Kathmandu, we had this string telling us the Nepalese time

rules:

<+0545>-5:45

Ok, simple enough. But what about a timezone with DST transitions? The syntax

has lots of defaults (DST will be a one-hour jump, it happens at 2am by default,

etc) but `Europe/Athens` is a good example of one that uses most of the syntax:

$ cat /usr/share/zoneinfo/Europe/Athens

...

EET-2EEST,M3.5.0/3,M10.5.0/4

That syntax means:

“Standard time is called `EET`, it’s 2 hours ahead of UTC. DST is called `EEST`

(it’s 3 hours ahead, an implicit default relative to standard time). Start DST in

month `3` on the last instance of (`5`) day `0` (Sunday) in that month, at 3am

local (`/3`). End DST on month `10` on the last Sunday at 4am local (`5.0/4`).”

https://en.wikipedia.org/wiki/Creston,_British_Columbia

So yeah, your computer does a bunch of kind of gnarly logic to figure out what

date-and-time a timestamp corresponds to, then figures out whether it’s inside or

outside DST to figure out the current local time. Delightful.

In case you’re curious, the spec says “5” means “last instance of”, and “1” means

“first instance of”. But only weeks “1”, “2”, and “5” are used:

$ find -L /usr/share/zoneinfo -type f | xargs -n1 ./tzdump | jq -r 'if .Rules.

18 1

89 2

81 5

Here’s a fun twist: on my Mac 100% of timezones either don’t have DST at all or

use this nth-instance-of-day-of-month rules to do DST switching. But inside

`/var/db/timezone` there’s different versions of tzdb. In there is a version with

other kinds of timezones in it:

$ cat /var/db/timezone/tz/2024a.1.0/zoneinfo/Africa/Casablanca

...

XXX-2<+01>-1,0/0,J365/23

That timezone basically means “we are perpetually on daylight savings”, because

the `J###` syntax means “`###`-th day of the year, not counting Feb 29 if there is

one” (J stands for “Julian calendar”).

Technically, that timezone also exercises the prefixless (i.e. without `M` or `J`)

syntax for indicating days, where `###` means “`###`-th day of year, counting any

Feb 29”. But in this case it’s a distinction without a difference.

(Aside: All this stuff comes from POSIX. GNU’s docs about the POSIX `TZ` env var,

which TZIF builds on, are the best I know of online for this stuff.)

But this is just the start of the weirdness that is `Africa/Casablanca`.

`Africa/Casablanca` and `Asia/Gaza` follow the

moon, but timezones follow the sun

https://howardhinnant.github.io/date_algorithms.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

The TZIF format supports three possible rules for deciding on your daylight savings

transition day:

Rules like “first Tuesday of March”

Rules like “45th day of the year”

Rules like “45th day of the year, Feb 29 doesn’t count”

Morocco and Gaza do their daylight savings based on Ramadan. Ramadan is a

month in the Islamic calendar. The Islamic calendar is based on the moon. The

lunar calendar isn’t a clean multiple of the solar calendar; from the Gregorian

perspective, lunar months seem to slowly “rotate” around the year, because

they’re basically on a different modulo. There’s a problem there for our heroes at

the tzdb.

The solution? The dumbest possible one.

A TZIF file ends with the footer syntax we’ve been talking about to this point. But it

starts with a big long list of historical data about a timezone. If a country ever

changes timezone rules, TZIF represents that by encoding the new rule in the

footer, and hard-coding all the old transitions.

But you can also just take these hard-coded transitions and put them into the

future. The hard-coded transitions take precedence over the footer. So the TZIF

folks:

1. Picked a year far enough into the future (2086, as it turns out)

2. Wrote a script in emacs lisp to calculate Ramadan

3. Use the output of that script to generate transitions for Morocco and Gaza

And that’s why in practice Morocco and Gaza are just hard-coded in the tzdb,

unlike every other timezone.

In case you’re hoping for more fun timezones like this, I’m afraid you’re out of luck.

The others at the bottom of this list, which filters for transitions beyond 2025, are

just synonyms of Casablanca and Gaza.

$ find -L /var/db/timezone/tz/2024a.1.0/zoneinfo/ -type f | xargs -n1 ./tzdump

 26 /var/db/timezone/tz/2024a.1.0/zoneinfo//Africa/Cairo

...

https://github.com/eggert/tz/blob/339e81d1ade620e70ecc78c2b4ec1309a6b80a2f/asia#L3494-L3512
https://github.com/eggert/tz/blob/339e81d1ade620e70ecc78c2b4ec1309a6b80a2f/africa#L861-L878

 26 /var/db/timezone/tz/2024a.1.0/zoneinfo//US/Pacific

 26 /var/db/timezone/tz/2024a.1.0/zoneinfo//WET

 26 /var/db/timezone/tz/2024a.1.0/zoneinfo//posixrules

 130 /var/db/timezone/tz/2024a.1.0/zoneinfo//Africa/Casablanca

 130 /var/db/timezone/tz/2024a.1.0/zoneinfo//Africa/El_Aaiun

 184 /var/db/timezone/tz/2024a.1.0/zoneinfo//Asia/Gaza

 184 /var/db/timezone/tz/2024a.1.0/zoneinfo//Asia/Hebron

It looks like every other timezone just has 26 transitions beyond 2025, which I

think are just there to make software that doesn’t know about the TZIF footer

transition rules be accurate a few years into the future anyway.

`America/Nuuk` transitions to DST at -1 o’clock

Nuuk is in Greenland, and is part of the greater EU cinematic universe.

All of Europe (idk whether this is an EU/EEZ/EFTA/CoE thing) syncs up their daylight

savings, except for Iceland, which doesn’t do DST at all (`Atlantic/Reykjavik`,

which is technically an alias for `Africa/Abidjan`, is basically just UTC; their rule

string is just `GMT0`).

Most Europeans are familiar with three major timezones, which we can refer to as

`Europe/Lisbon` (western), `Europe/Brussels` (central), and `Europe/Athens`

(eastern). They’re each one hour ahead of the other, and so their timezone

transitions look like:

I'm gonna space these out to highlight the symmetry,

and also spell out the implicit "/2"

Europe/Lisbon: WET0WEST ,M3.5.0/1,M10.5.0/2

Europe/Brussels: CET-1CEST,M3.5.0/2,M10.5.0/3

Europe/Athens: EET-2EEST,M3.5.0/3,M10.5.0/4

In other words, Lisbon springs forward at 1am, Brussels at 2am, and Athens at

3am. But those times are local. In reality, they’re all at the same instant.

This makes good sense. It’s good for business that the time difference between

any two spots in Europe is always the same.

https://en.wikipedia.org/wiki/Nuuk
https://en.wikipedia.org/wiki/Iceland
https://en.wikipedia.org/wiki/Special_territories_of_members_of_the_European_Economic_Area
https://en.wikipedia.org/wiki/Greenland
https://github.com/eggert/tz/blob/7748036bace8562b9c047f368c8eba5f35e8c4b4/backward#L226

Greenland would like to be part of the action. Thing is, Greenland is pretty far west

of continental Europe. Whereas Lisbon’s standard time is UTC, Greenland’s is 3

hours behind UTC. Here’s their daylight transition rules:

$ cat /var/db/timezone/tz/2024a.1.0/zoneinfo/America/Nuuk

<-02>2<-01>,M3.5.0/-1,M10.5.0/0

Take note of `M3.5.0/-1`. The first part is the standard European DST start day. The

`/-1` part? That means that instead of doing DST at like 2am (`/2`), Greenland

does it at -1 o’clock (`/-1`). The way the rules file is encoded, daylight savings for

Greenland is meant to happen on Sunday, but in fact happens at 11pm on the

Saturday before. Super weird.

I’m guessing this breaks software, because America/Nuuk and its aliases are one of

those timezones whose transition rules are just entirely ommitted in

`/usr/share/zoneinfo` on my Mac. They’re only available in other copies of tzdb in

`/var/db/timezone`.

Oh, `America/Santiago` and `Africa/Cairo` transition

at 24 o’clock

Nuuk is the earliest anyone does a transition. Santiago and Cairo are the latest.

They both do transitions at 24 o’clock? Like, the next day?

America/Santiago: <-04>4<-03>,M9.1.6/24,M4.1.6/24

Africa/Cairo: EET-2EEST,M4.5.5/0,M10.5.4/24

I think they’re both encoded like that because of weirdness in how the

governments define the rules. Like `M10.5.4/24` means “last Thurday of October,

24 o’clock”, which really means “the day after the last Thursday of October”. But

that’s not the same thing as “last Friday of October” if the month ends on

Thursday?

Both of these files are also in Mac’s list of naughty timezones that don’t go in

`/usr/share/zoneinfo`.

`Australia/Lord_Howe` has the weirdest DST

transition

When you do a DST transition, you “spring forward” and “fall back”. Surely

everyone agrees it’s a one-hour jump, right?

Here’s a script to check. What is the time difference between standard and

daylight time in every timezone?

$ find -L /usr/share/zoneinfo -type f | xargs -n1 ./tzdump | jq 'if .Rules.DST

410 0

2 1800

185 3600

1 7200

Hmm. 410 timezones just don’t DST at all. 185 have a 3600-second, i.e. 1-hour,

difference. And then there are the malcontents.

The 7200-second, i.e. 2-hour, jump is `Antarctica/Troll`. Fitting.

<+00>0<+02>-2,M3.5.0/1,M10.5.0/3

So during the winter (i.e. the northern summer) they use Norway time? But there

are like 6 people over the winter at Troll? Do these 6 souls appreciate their

contribution to software esoterica? I hope they do. Apparently they use like four

different times during the year down there in practice, but there’s no syntax to

express that.

OK but the real question is what’s up with the two 1800 transitions. They’re

synonyms for each other. It’s `Australia/Lord_Howe`, which has a powerful 30-

minute DST transition:

<+1030>-10:30<+11>-11,M10.1.0,M4.1.0

10h30m ahead of UTC standard, 11h DST. Love this for them. Running cron jobs on

an hourly basis doesn’t in practice have very weird interactions with DST.

https://en.wikipedia.org/wiki/Troll_(research_station)
https://github.com/eggert/tz/blob/7748036bace8562b9c047f368c8eba5f35e8c4b4/antarctica#L212-L236
https://github.com/eggert/tz/blob/7748036bace8562b9c047f368c8eba5f35e8c4b4/antarctica#L212-L236

Everywhere else on the planet, every 60 minutes you’re back to the same spot on

the clock.

Except Lord Howe Island. Heroes. On the first Sunday of October, a 60-minute

timegap only puts you halfway around the clock. All your cron jobs are now

staggered relative to the local wall clock.

In case you’re curious, Lord Howe Island belongs to Australia. It has 382 people at

the latest census. It’s a bit of a natural paradise, and apparently to preserve that

there’s a cap of 400 tourists at a time.

Probably the most famous aspect of Lord Howe is Ball’s Pyramid.

Ball's Pyramid Memorial for Stickbugs and Software Engineers who write Timezone-related

Code.

It’s an old collapsed volcano. It looks cool. It has some rare stick bugs.

Big takeaways

Timezones are weird, but finitely so. All they consist of is:

An ID, e.g. `America/Los_Angeles`

A set of hard-coded transitions, which range from the past into the future

A set of rules for how future transitions may happen

Any given time in a timezone is just:

https://en.wikipedia.org/wiki/Lord_Howe_Island
https://en.wikipedia.org/wiki/Ball%27s_Pyramid
https://en.wikipedia.org/wiki/Ball%27s_Pyramid#Dryococelus_australis

An offset from UTC

With a “designator” time that doesn’t mean much

(This usually isn’t outputted anywhere) Whether the time is considered DST

You can always uniquely identify what UTC time someone is referring to whenever

they tell you their timezone + local time + current time designator. The timezone

+ designator gives you an offset, and you can apply the offset to the local time to

get UTC.

Like, it’s weird, it’s quirky, but it’s not like all bets are off.

Also:

Don’t let people bully you into thinking that just because something is

complicated, it’s impossible.

This is because almost every standard (except ISO8601, whatever) is just a file,

and you can read it. You are smart. You can do it. Embrace the weirdness of

Greenland’s daylight savings. Believe in yourself.

If I were UN secretary general, I would kick out any countries that I deem

insufficiently considerate of Paul Eggert’s time.

Appendix: Other weird stuff in

zoneinfo

Honestly, there’s some stuff in zoneinfo that I can’t figure out. Even I have nerd-

sniping limits. Exercises for the reader.

These time zones have hundreds of hard-coded transitions out into the future. I

don’t understand why, it’s not like they all have lunar calendar stuff going on.

Asia/Jerusalem has 780 transitions in the future, out of 901 total

Africa/Cairo has 800 transitions in the future, out of 929 total

America/Nuuk has 800 transitions in the future, out of 889 total

America/Santiago has 800 transitions in the future, out of 931 total

Pacific/Easter has 800 transitions in the future, out of 911 total

Asia/Gaza has 982 transitions in the future, out of 1106 total

They all lack a rules footer, but our friend Africa/Casablanca has a mere 132

transitions hard-coded and lacks a rules footer too. What’s up with that?

P.S. If you’re the type of weird to think this stuff is neat: email me.

ulysse.carion@ssoready.com ;)

Open-source dev tools for enterprise SSO. Ship SAML support this afternoon.

Product

Log in

Pricing

Company

About

Legal

Privacy Policy

Terms of Use

© Copyright 2024, All rights reserved by Codomain Data Corporation (d.b.a. SSOReady)

mailto:ulysse.carion@ssoready.com
https://x.com/ssoready
https://github.com/ssoready
https://app.ssoready.com/
https://ssoready.com/pricing
https://ssoready.com/company
https://ssoready.com/terms
https://ssoready.com/terms

