
Building search-based RAG using Claude, Datasette and Val Town
21st June 2024

Retrieval Augmented Generation (RAG) is a technique for adding extra “knowledge” to systems
built on LLMs, allowing them to answer questions against custom information not included in
their training data. A common way to implement this is to take a question from a user, translate
that into a set of search queries, run those against a search engine and then feed the results
back into the LLM to generate an answer.

I built a basic version of this pattern against the brand new Claude 3.5 Sonnet language model,
using SQLite full-text search running in Datasette as the search backend and Val Town as the
prototyping platform.

The implementation took just over an hour, during a live coding session with Val.Town founder
Steve Krouse. I was the latest guest on Steve’s live streaming series where he invites people to
hack on projects with his help.

You can watch the video below or on YouTube. Here are my own detailed notes to accompany
the session.

Val Town Livestream with Simon WillisonVal Town Livestream with Simon Willison

Bonus: Claude 3.5 Sonnet artifacts demo

We started the stream by chatting a bit about the new Claude 3.5 Sonnet release. This turned
into an unplanned demo of their “artifacts” feature where Claude can now build you an
interactive web page on-demand.

Simon Willison’s Weblog Subscribe

#

https://simonwillison.net/2024/Jun/20/claude-35-sonnet/
https://www.sqlite.org/fts5.html
https://datasette.io/
https://www.val.town/
https://www.youtube.com/@ValDotTown/videos?view=2&sort=dd&live_view=503&shelf_id=2
https://www.youtube.com/watch?v=9pmC3P1fUFo
https://www.youtube.com/watch?v=9pmC3P1fUFo
https://simonwillison.net/
https://simonwillison.net/about/#subscribe

At 3m02s I prompted it with:

Build me a web app that teaches me about mandelbrot fractals, with interactive widgets

This worked! Here’s the code it wrote—I haven’t yet found a good path for turning that into a
self-hosted interactive page yet.

This didn’t support panning, so I added:

Again but let me drag on the canvas element to pan around

Which gave me this. Pretty impressive!

https://www.youtube.com/watch?v=9pmC3P1fUFo&t=3m02s
https://gist.github.com/simonw/e57932549e47db2e45f1f75742b078f1
https://gist.github.com/simonw/76ef926312093333b48093da6def59fc

Ingredients for the RAG project

RAG is often implemented using vector search against embeddings, but there’s an alternative
approach where you turn the user’s question into some full-text search queries, run those
against a traditional search engine, then feed the results back into an LLM and ask it to use
them to answer the question.

SQLite includes surprisingly good full-text search, and I’ve built a lot of tools against that in the
past—including sqlite-utils enable-fts and Datasette’s FTS features.

My blog has a lot of content, which lives in a Django PostgreSQL database. But I also have a
GitHub Actions repository which backs up that data as JSON, and then publishes a SQLite copy
of it to datasette.simonwillison.net—which means I have a Datasette-powered JSON API for
running searches against my content.

Let’s use that API to build a question answering RAG system!

#

https://simonwillison.net/2023/Oct/23/embeddings/#answering-questions-with-retrieval-augmented-generation
https://www.sqlite.org/fts5.html
https://sqlite-utils.datasette.io/en/stable/cli.html#configuring-full-text-search
https://docs.datasette.io/en/latest/full_text_search.html
https://github.com/simonw/simonwillisonblog-backup/blob/main/.github/workflows/backup.yml
https://datasette.simonwillison.net/

Step one then was to prototype up a SQL query we could use with that API to get back search
results. After some iteration I got to this:

select

 blog_entry.id,

 blog_entry.title,

 blog_entry.body,

 blog_entry.created

from

 blog_entry

 join blog_entry_fts on blog_entry_fts.rowid = blog_entry.rowid

where

 blog_entry_fts match :search

order by

 rank

limit

 10

Try that here. The query works by joining the blog_entry table to the SQLite FTS
blog_entry_fts virtual table, matched against the ?search= parameter from the URL.

When you join against a FTS table like this a rank column is exposed with the relevance score
for each match.

Adding .json to the above URL turns it into an API call... so now we have a search API we can
call from other code.

A plan for the build

We spent the rest of the session writing code in Val Town, which offers a browser editor for a
server-side Deno-based environment for executing JavaScript (and TypeScript) code.

The finished code does the following:

#

https://datasette.simonwillison.net/simonwillisonblog?sql=select%0D%0A++blog_entry.id%2C%0D%0A++blog_entry.title%2C%0D%0A++blog_entry.body%2C%0D%0A++blog_entry.created%0D%0Afrom%0D%0A++blog_entry%0D%0A++join+blog_entry_fts+on+blog_entry_fts.rowid+%3D+blog_entry.rowid%0D%0Awhere%0D%0A++blog_entry_fts+match+%3Asearch%0D%0Aorder+by%0D%0A++rank%0D%0Alimit%0D%0A++10&search=%22shot-scraper%22+OR+%22screenshot%22+OR+%22web%22+OR+%22tool%22+OR+%22automation%22+OR+%22CLI%22

1. Accepts a user’s question from the ?question= query string.
2. Asks Claude 3.5 Sonnet to turn that question into multiple single-word search queries,

using a Claude function call to enforce a schema of a JSON list of strings.
3. Turns that list of keywords into a SQLite FTS query that looks like this: "shot-scraper" OR

"screenshot" OR "web" OR "tool" OR "automation" OR "CLI"

4. Runs that query against Datasette to get back the top 10 results.
5. Combines the title and body from each of those results into a longer context.
6. Calls Claude 3 again (originally Haiku, but then we upgraded to 3.5 Sonnet towards the

end) with that context and ask it to answer the question.
7. Return the results to the user.

The annotated final script

Here’s the final script we ended up with, with inline commentary. Here’s the initial setup:

import Anthropic from "npm:@anthropic-ai/sdk@0.24.0";

/* This automatically picks up the API key from the ANTHROPIC_API_KEY

environment variable, which we configured in the Val Town settings */

const anthropic = new Anthropic();

We’re using the very latest release of the Anthropic TypeScript SDK, which came out just a few
hours prior to recording the livestream.

I set the ANTHROPIC_API_KEY environment variable to my Claude 3 API key in the Val Town
settings, making it available to all of my Vals. The Anthropic() constructor picks that up
automatically.

Next, the function to suggest keywords for a user’s question:

async function suggestKeywords(question) {

 // Takes a question like "What is shot-scraper?" and asks 3.5 Sonnet

 // to suggest individual search keywords to help answer the question.

 const message = await anthropic.messages.create({

 max_tokens: 128,

 model: "claude-3-5-sonnet-20240620",

 // The tools option enforces a JSON schema array of strings

 tools: [{

 name: "suggested_search_keywords",

 description: "Suggest individual search keywords to help answer the question.",

 input_schema: {

 type: "object",

 properties: {

 keywords: {

 type: "array",

 items: {

 type: "string",

 },

 description: "List of suggested single word search keywords",

 },

 },

 required: ["keywords"],

 },

#

https://github.com/anthropics/anthropic-sdk-typescript
https://github.com/anthropics/anthropic-sdk-typescript/commits/sdk-v0.24.0/
https://github.com/anthropics/anthropic-sdk-typescript/commits/sdk-v0.24.0/

 }],

 // This forces it to always run the suggested_search_keywords tool

 tool_choice: { type: "tool", name: "suggested_search_keywords" },

 messages: [

 { role: "user", content: question },

],

 });

 // This helped TypeScript complain less about accessing .input.keywords

 // since it knows this object can be one of two different types

 if (message.content[0].type == "text") {

 throw new Error(message.content[0].text);

 }

 return message.content[0].input.keywords;

}

We’re asking Claude 3.5 Sonnet here to suggest individual search keywords to help answer that
question. I tried Claude 3 Haiku first but it didn’t reliably return single word keywords—Sonnet
3.5 followed the “single word search keywords” instruction better.

This function also uses Claude tools to enforce a response in a JSON schema that specifies an
array of strings. More on how I wrote that code (with Claude’s assistance) later on.

Next, the code to run the search itself against Datasette:

// The SQL query from earlier

const sql = `select

 blog_entry.id,

 blog_entry.title,

 blog_entry.body,

 blog_entry.created

from

 blog_entry

 join blog_entry_fts on blog_entry_fts.rowid = blog_entry.rowid

where

 blog_entry_fts match :search

order by

 rank

limit

 10`;

async function runSearch(keywords) {

 // Turn the keywords into "word1" OR "word2" OR "word3"

 const search = keywords.map(s => `"${s}"`).join(" OR ");

 // Compose the JSON API URL to run the query

 const params = new URLSearchParams({

 search,

 sql,

 _shape: "array",

 });

 const url = "https://datasette.simonwillison.net/simonwillisonblog.json?" + params;

 const result = await (await fetch(url)).json();

 return result;

}

Datasette supports read-only SQL queries via its JSON API, which means we can construct the
SQL query as a JavaScript string and then encode it as a query string using URLSearchParams().

We also take the list of keywords and turn them into a SQLite FTS search query that looks like
"word1" OR "word2" OR "word3".

SQLite’s built-in relevance calculations work well with this—you can throw in dozens of words
separated by OR and the top ranking results will generally be the ones with the most matches.

Finally, the code that ties this together—suggests keywords, runs the search and then asks
Claude to answer the question. I ended up bundling that together in the HTTP handler for the
Val Town script—this is the code that is called for every incoming HTTP request:

export default async function(req: Request) {

 // This is the Val Town HTTP handler

 const url = new URL(req.url);

 const question = url.searchParams.get("question").slice(0, 40);

 if (!question) {

 return Response.json({ "error": "No question provided" });

 }

 // Turn the question into search terms

 const keywords = await suggestKeywords(question);

 // Run the actual search

 const result = await runSearch(keywords);

 // Strip HTML tags from each body property, modify in-place:

 result.forEach(r => {

 r.body = r.body.replace(/<[^>]*>/g, "");

 });

 // Glue together a string of the title and body properties in one go

 const context = result.map(r => r.title + " " + r.body).join("\n\n");

 // Ask Claude to answer the question

 const message = await anthropic.messages.create({

 max_tokens: 1024,

 model: "claude-3-haiku-20240307",

 messages: [

 { role: "user", content: context },

 { role: "assistant", content: "Thank you for the context, I am ready to answer

your question" },

 { role: "user", content: question },

],

 });

 return Response.json({answer: message.content[0].text});

}

There are many other ways you could arrange the prompting here. I quite enjoy throwing
together a fake conversation like this that feeds in the context and then hints at the agent that it
should respond next with its answer, but there are many potential variations on this theme.

This initial version returned the answer as a JSON object, something like this:

{

 "answer": "shot-scraper is a command-line tool that automates the process of

taking screenshots of web pages..."

}

We were running out of time, but we wanted to add an HTML interface. Steve suggested getting
Claude to write the whole thing! So we tried this:

 const message = await anthropic.messages.create({

 max_tokens: 1024,

 model: "claude-3-5-sonnet-20240620", // "claude-3-haiku-20240307",

 system: "Return a full HTML document as your answer, no markdown, make it pretty

with exciting relevant CSS",

 messages: [

 { role: "user", content: context },

 { role: "assistant", content: "Thank you for the context, I am ready to answer

your question as HTML" },

 { role: "user", content: question },

],

 });

 // Return back whatever HTML Claude gave us

 return new Response(message.content[0].text, {

 status: 200,

 headers: { "Content-Type": "text/html" }

 });

We upgraded to 3.5 Sonnet to see if it had better “taste” than Haiku, and the results were really
impressive. Here’s what it gave us for “What is Datasette?”:

It even styled the page with flexbox to arrange the key features of Datasette in a 2x2 grid! You
can see that in the video at 1h13m17s.

There’s a full copy of the final TypeScript code available in a Gist.

Some tricks we used along the way

I didn’t write all of the above code. Some bits of it were written by pasting things into Claude 3.5
Sonnet, and others used the Codeium integration in the Val Town editor (described here).

One pattern that worked particularly well was getting Sonnet to write the tool-using TypeScript
code for us.

The Claude 3 documentation showed how to do that using curl. I pasted that curl example in,
added some example TypeScript and then prompted:

Guess the JavaScript for setting up a tool which just returns a list of strings, called
suggested_search_keywords

Here’s my full prompt:

#!/bin/bash

IMAGE_URL="https://upload.wikimedia.org/wikipedia/commons/a/a7/Camponotus_flavomargin

IMAGE_MEDIA_TYPE="image/jpeg"

IMAGE_BASE64=$(curl "$IMAGE_URL" | base64)

curl https://api.anthropic.com/v1/messages \

 --header "content-type: application/json" \

 --header "x-api-key: $ANTHROPIC_API_KEY" \

 --header "anthropic-version: 2023-06-01" \

 --data \

'{

 "model": "claude-3-sonnet-20240229",

 "max_tokens": 1024,

#

https://www.youtube.com/watch?v=9pmC3P1fUFo&t=1h13m17s
https://gist.github.com/simonw/7f8db0c452378eb4fa4747196b8194dc
https://codeium.com/
https://blog.val.town/blog/val-town-newsletter-16/#-codeium-completions
https://docs.anthropic.com/en/docs/build-with-claude/tool-use

 "tools": [{

 "name": "record_summary",

 "description": "Record summary of an image using well-structured JSON.",

 "input_schema": {

 "type": "object",

 "properties": {

 "key_colors": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "r": { "type": "number", "description": "red value [0.0,

1.0]" },

 "g": { "type": "number", "description": "green value

[0.0, 1.0]" },

 "b": { "type": "number", "description": "blue value [0.0,

1.0]" },

 "name": { "type": "string", "description": "Human-

readable color name in snake_case, e.g. \"olive_green\" or \"turquoise\"" }

 },

 "required": ["r", "g", "b", "name"]

 },

 "description": "Key colors in the image. Limit to less then

four."

 },

 "description": {

 "type": "string",

 "description": "Image description. One to two sentences max."

 },

 "estimated_year": {

 "type": "integer",

 "description": "Estimated year that the images was taken, if is

it a photo. Only set this if the image appears to be non-fictional. Rough estimates

are okay!"

 }

 },

 "required": ["key_colors", "description"]

 }

 }],

 "tool_choice": {"type": "tool", "name": "record_summary"},

 "messages": [

 {"role": "user", "content": [

 {"type": "image", "source": {

 "type": "base64",

 "media_type": "'$IMAGE_MEDIA_TYPE'",

 "data": "'$IMAGE_BASE64'"

 }},

 {"type": "text", "text": "Describe this image."}

]}

]

}'

Based on that example and this JavaScript code:

const anthropic = new Anthropic();

const message = await anthropic.messages.create({

 max_tokens: 1024,

 system: "Suggest individual search keywords to help answer this question. No

yapping.",

 messages: [

 { role: "user", content: question },

],

 model: "claude-3-haiku-20240307",

});

console.log(message.content[0].text);

Guess the JavaScript for setting up a tool which just returns a list of strings,

called suggested_search_keywords

It gave me back this, which was the exact code I needed to make my tool-enabled API call from
Val Town:

const anthropic = new Anthropic();

const message = await anthropic.messages.create({

 max_tokens: 1024,

 model: "claude-3-haiku-20240307",

 tools: [{

 name: "suggested_search_keywords",

 description: "Suggest individual search keywords to help answer the question.",

 input_schema: {

 type: "object",

 properties: {

 keywords: {

 type: "array",

 items: {

 type: "string"

 },

 description: "List of suggested search keywords"

 }

 },

 required: ["keywords"]

 }

 }],

 tool_choice: { type: "tool", name: "suggested_search_keywords" },

 messages: [

 { role: "user", content: question }

]

});

console.log(message.content[0].text);

I really like this trick, and I use it often in my own work. Find some example code that illustrates
the pattern you need, paste in some additional context and get the LLM to figure the rest out for
you.

This is just a prototype

It’s important to reiterate that this is just a prototype—it’s the version of search-backed RAG I
could get working in an hour.

#

Putting something like this into production requires a whole lot more work. Most importantly,
good RAG systems are backed by evals—it’s extremely hard to iterate on and improve a system
like this if you don’t have a good mechanism in place to evaluate if your changes are making
things better or not. Your AI Product Needs Evals by Hamel Husain remains my favourite piece
of writing on how to go about putting these together.

Additional links from the livestream

Here are some of the other projects and links mentioned during our conversation:

Datasette and its 150+ plugins.
My original idea for a project was to use the Datasette Write API and run scheduled Vals to
import data from various sources (my toots, tweets, posts etc) into a single searchable table.
LLM—my command-line utility for working with different language models.
shot-scraper for automating screenshots and scraping websites with JavaScript from the
command-line—here’s a recent demo where I scraped Google using shot-scraper and fed the
results into LLM as a basic form of RAG.
My current list of 277 projects with at least one release on GitHub.
My TIL blog, which runs on a templated version of Datasette—here’s the database and here’s
the GitHub Actions workflow that builds it using the Baked Data pattern.
I have some previous experiments using embeddings with Datasette, including a table of
embeddings (encoded like this) for my TIL blog which I use to power related items. That’s
described in this TIL: Storing and serving related documents with openai-to-sqlite and
embeddings.

Posted 21st June 2024 at 8:44 pm · Follow me on Mastodon or Twitter or subscribe to my newsletter

More recent articles

Notes on the new Claude analysis JavaScript code execution tool - 24th October 2024

Initial explorations of Anthropic's new Computer Use capability - 22nd October 2024

Everything I built with Claude Artifacts this week - 21st October 2024

Part of series How I use LLMs and ChatGPT

14. Running OCR against PDFs and images directly in your browser - March 30, 2024, 5:59 p.m.
15. Building files-to-prompt entirely using Claude 3 Opus - April 8, 2024, 8:40 p.m.
16. AI for Data Journalism: demonstrating what we can do with this stuff right now - April 17, 2024, 9:04 p.m.
17. Building search-based RAG using Claude, Datasette and Val Town - June 21, 2024, 8:44 p.m.
18. django-http-debug, a new Django app mostly written by Claude - Aug. 8, 2024, 3:26 p.m.
19. Building a tool showing how Gemini Pro can return bounding boxes for objects in images - Aug. 26, 2024, 4:55 a.m.
20. Notes on using LLMs for code - Sept. 20, 2024, 3:10 a.m.

… more

projects 428 ai 859 datasette 415 prompt-engineering 97 generative-ai 725 llms 717

ai-assisted-programming 71 anthropic 86 claude 91 annotated-talks 23 val-town 5 rag 24

#

https://hamel.dev/blog/posts/evals/
https://datasette.io/
https://datasette.io/plugins
https://docs.datasette.io/en/latest/json_api.html#the-json-write-api
https://llm.datasette.io/
https://shot-scraper.datasette.io/
https://simonwillison.net/2024/Jun/17/cli-language-models/#frame_003715.jpg
https://github.com/simonw/simonw/blob/main/releases.md
https://til.simonwillison.net/
https://til.simonwillison.net/tils
https://simonwillison.net/2024/Jun/21/search-based-rag/
https://simonwillison.net/2024/Jun/21/search-based-rag/
https://simonwillison.net/2021/Jul/28/baked-data/
https://til.simonwillison.net/tils/embeddings
https://til.simonwillison.net/tils/embeddings
https://llm.datasette.io/en/stable/embeddings/storage.html
https://til.simonwillison.net/llms/openai-embeddings-related-content
https://til.simonwillison.net/llms/openai-embeddings-related-content
https://simonwillison.net/2024/Jun/21/
https://fedi.simonwillison.net/@simon
https://twitter.com/simonw
https://simonwillison.net/about/#subscribe
https://simonwillison.net/2024/Oct/24/claude-analysis-tool/
https://simonwillison.net/2024/Oct/22/computer-use/
https://simonwillison.net/2024/Oct/21/claude-artifacts/
https://simonwillison.net/series/using-llms/
https://simonwillison.net/2024/Mar/30/ocr-pdfs-images/
https://simonwillison.net/2024/Apr/8/files-to-prompt/
https://simonwillison.net/2024/Apr/17/ai-for-data-journalism/
https://simonwillison.net/2024/Aug/8/django-http-debug/
https://simonwillison.net/2024/Aug/26/gemini-bounding-box-visualization/
https://simonwillison.net/2024/Sep/20/using-llms-for-code/
https://simonwillison.net/series/using-llms/
https://simonwillison.net/tags/projects/
https://simonwillison.net/tags/ai/
https://simonwillison.net/tags/datasette/
https://simonwillison.net/tags/prompt-engineering/
https://simonwillison.net/tags/generative-ai/
https://simonwillison.net/tags/llms/
https://simonwillison.net/tags/ai-assisted-programming/
https://simonwillison.net/tags/anthropic/
https://simonwillison.net/tags/claude/
https://simonwillison.net/tags/annotated-talks/
https://simonwillison.net/tags/val-town/
https://simonwillison.net/tags/rag/

claude-artifacts 16 claude-3-5-sonnet 31

Next: Open challenges for AI engineering

Previous: Weeknotes: Datasette Studio and a whole lot of blogging

Colophon © 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
2017 2018 2019 2020 2021 2022 2023 2024

https://simonwillison.net/tags/claude-artifacts/
https://simonwillison.net/tags/claude-3-5-sonnet/
https://simonwillison.net/2024/Jun/27/ai-worlds-fair/
https://simonwillison.net/2024/Jun/19/datasette-studio/
https://simonwillison.net/about/#about-site
https://simonwillison.net/2002/
https://simonwillison.net/2003/
https://simonwillison.net/2004/
https://simonwillison.net/2005/
https://simonwillison.net/2006/
https://simonwillison.net/2007/
https://simonwillison.net/2008/
https://simonwillison.net/2009/
https://simonwillison.net/2010/
https://simonwillison.net/2011/
https://simonwillison.net/2012/
https://simonwillison.net/2013/
https://simonwillison.net/2014/
https://simonwillison.net/2015/
https://simonwillison.net/2016/
https://simonwillison.net/2017/
https://simonwillison.net/2018/
https://simonwillison.net/2019/
https://simonwillison.net/2020/
https://simonwillison.net/2021/
https://simonwillison.net/2022/
https://simonwillison.net/2023/
https://simonwillison.net/2024/

