
Back to posts

Request-reply in
Postgres

Anthony Accomazzo

@accomazzo
• Oct 23, 2024 • 7 min read

Who doesn't like to go a little overboard with Postgres? Extensions

like pgsql-http push what we think is possible (or permissible) to do

in the database.

Try now

https://blog.sequinstream.com/
https://twitter.com/accomazzo
https://github.com/pramsey/pgsql-http?ref=blog.sequinstream.com
https://sequinstream.com/
https://console.sequinstream.com/register

I wondered the other day if you could build a request-reply

mechanism using plain Postgres components. Turns out, you can!

Whether or not you should is left as a decision for the reader.

Along the way, I'll pull in a bunch of Postgres tools we rarely get a

chance to use like unlogged tables, advisory locks, and procedures:

Pub-sub vs request vs request-
reply

Postgres has support for pub-sub with its `LISTEN/NOTIFY`

feature. But pub-sub is limited. The sender doesn't know if any

processes are around to handle its notification. And the sender can't

receive a reply.

One layer up from the pub-sub pattern is the request pattern. In a

request, the sender should raise if there are no handlers. This gives

the sending process firmer guarantees that its request will be

handled. You can also specify that only one handler should receive

the request.

Finally, in the request-reply pattern, the sender blocks until it

receives a response from the handler. This gives the sender the most

guarantees, as it knows for sure whether or not the request was

successfully handled. And, the sender can receive a response

payload, which it might use to continue its operation.

Why doesn't Postgres have
request or request-reply?

Before building these things in Postgres, it's worth asking why they

don't come packaged with the database. The reasons are reasonable

😄

Pub-sub is a great fit for a database system. Publishing adds very

little overhead to transactions, as it's a non-blocking broadcast.

Requests seem like they'd be a nice improvement to pub-sub. After

all, what's the point of publishing if nothing is around to hear it?

The issue with requests is that you're coupling transactions to the

lifecycle of an external service. If that service is down, your requests

will fail, and so your transactions will grind to a halt.

So, the correct design pattern here is to treat `NOTIFY` as an

optimization, not as critical communication. If your service really

needs to know about database changes, it should have some other

primary way of detecting them. It can poll the database, for example.

Then, you can layer `NOTIFY` on top to reduce polling frequency

and learn about changes instantly – a great optimization.

Request-reply is where things really get out of hand. If this is

happening inside of a transaction, you're now blocking a process – a

precious resource in Postgres – on a reply. What if the service takes

30 seconds to respond?

When might you use
request/request-reply?

There are two situations where these patterns in Postgres aren't so

crazy:

Service-to-service communication in a
radically simple setup

Maybe you want to keep your stack as simple as possible. You don't

want or need to add more infrastructure to do service-to-service

communication.

With this approach, your app instances just need to connect to

Postgres and they have everything they need to do their jobs and

coordinate.

You're building a tool with a Postgres
interface

Think of a tool like Supabase or the aforementioned pgsql-http,

where there's a lot of application logic happening inside Postgres.

The more logic that lives in Postgres instead of your application, the

more you'll be tempted to reach for power features like this.

The code

I built out a proof-of-concept, which you can checkout on GitHub.

How it works

The sender

As you'll see, using a table is key to �1) overcoming limitations with

payload size and �2) providing a channel for the requester to receive

a reply.

The `request_reply` table:

https://github.com/supabase/supabase?ref=blog.sequinstream.com
https://github.com/sequinstream/demo-pg-request-reply?ref=blog.sequinstream.com

createcreate typetype request_reply_state request_reply_state asas enumenum (('sending''sending',, 'pr'pr

createcreate unlogged unlogged tabletable request_reply request_reply ((

 id id serialserial primaryprimary keykey,,

 channel channel texttext notnot nullnull,,

 request request texttext notnot nullnull,,

 response response texttext,,

 state request_reply_state state request_reply_state notnot nullnull defaultdefault 'sending''sending'

));;

`channel` is the channel to use in `LISTEN/NOTIFY`. `request`

is the payload of the request. `response` will be used for the

payload of the response.

Finally, a great use case for unlogged tables! Unlogged tables in

Postgres are far more efficient to write to, as they don't write to the

WAL. But they're not crash-safe, which limits their use cases. For

temporary data like our request-reply mechanism, they're a great fit.

After inserting into the `request_reply` table, you can emit a

`NOTIFY` message to get a handler to respond. The `NOTIFY` will

broadcast on the `channel` specified. The body of the `NOTIFY`

will be the `id` for the `request_reply` entry.

You might be tempted to insert into `request_reply` , emit the

`NOTIFY` message, then await the response all in the same

query/function call. However, you need to commit the row first so

that it is visible to other sessions. After you commit, Postgres will

send your `NOTIFY` to the handlers. Then you can block, awaiting

the response.

Later, in "See it in action", I describe how you can use a

procedure to turn the operation into a one-liner.

So, you can use two function calls, `request()` and then

`await_reply()`.

Before inserting and broadcasting, Postgres can check if anyone is

listening. If not, Postgres should raise:

createcreate oror replacereplace functionfunction request request((p_channel p_channel texttext,, p_re p_re

returnsreturns intint asas $$ $$

declaredeclare

 v_id v_id intint;;

beginbegin

 -- Check if anyone is listening on the channel-- Check if anyone is listening on the channel

 ifif notnot existsexists ((selectselect 11 fromfrom pg_stat_activity pg_stat_activity wherewhere w w

 raise exception raise exception 'No listeners on channel `%`''No listeners on channel `%`',, p_ch p_ch

 endend ifif;;

 -- Insert the request and get the ID-- Insert the request and get the ID

 insertinsert intointo request_reply request_reply ((channelchannel,, request request)) valuesvalues ((

 -- Notify listeners-- Notify listeners

 -- Postgres sends after the commit completes-- Postgres sends after the commit completes

 perform pg_notify perform pg_notify((p_channelp_channel,, v_id:: v_id::texttext));;

 returnreturn v_id v_id;;

endend;;

$$ $$ languagelanguage plpgsql plpgsql;;

Then, the sender needs to block and await the reply. To do so, you

can poll the table `request_reply` while waiting, checking if the

`state` has transitioned to `replied`. An optimization to that is to

use advisory locks:

���Poll the table until the handler has picked up the message

(`request_reply.state != 'sending'`).

���Then, move from polling to trying to acquire an advisory lock.

As you'll see, when the handler picks up the message, it will

acquire a lock.

���Block until the handler releases the lock.

Again, this is an optimization that ensures the polling period is brief.

Advisory locks release instantly, so the sender will be able to

immediately see the reply when it's ready.

Here's `await_reply()`, which accepts the `id` of the

`request_reply` entry:

createcreate oror replacereplace functionfunction await_reply await_reply((v_id v_id intint))

returnsreturns texttext asas $$ $$

declaredeclare

 v_response v_response texttext;;

beginbegin

 -- Wait for the response-- Wait for the response

 looploop

 -- Check if the state has changed from 'sending'-- Check if the state has changed from 'sending'

 ifif existsexists ((selectselect 11 fromfrom request_reply request_reply wherewhere id id == v_ v_

 -- Try to acquire the advisory lock-- Try to acquire the advisory lock

 ifif pg_try_advisory_lock pg_try_advisory_lock((v_idv_id)) thenthen

 -- Lock acquired, fetch the response and delete -- Lock acquired, fetch the response and delete

 deletedelete fromfrom request_reply request_reply wherewhere id id == v_id v_id returretur

 -- Release the lock-- Release the lock

 perform pg_advisory_unlock perform pg_advisory_unlock((v_idv_id));;

 returnreturn v_response v_response;;

 endend ifif;;

 endend ifif;;

 -- Wait a bit before trying again-- Wait a bit before trying again

 perform pg_sleep perform pg_sleep((0.10.1));;

 endend looploop;;

endend;;

$$ $$ languagelanguage plpgsql plpgsql;;

When the handler releases the lock, the sender can continue. The

sender runs a `delete` query to remove the message from

`request_reply` and retrieve the payload.

The handler

In your application code, you can register a listener for the `NOTIFY`

broadcast. When it receives a message, it:

���Opens a transaction.

���Runs an `update ... returning` to retrieve the message,

setting the state to `processing`. It simultaneously acquires an

advisory lock.

���The handler can process the request.

���The handler runs a final `update`, setting the `response`.

���The handler releases the advisory lock.

Here's what the first update query looks like:

beginbegin;;

withwith available_message available_message asas ((

 selectselect id id,, request request

 fromfrom request_reply request_reply

 wherewhere id id == $ $11 andand state state == 'sending''sending'

 orderorder byby id id

 forfor updateupdate skip locked skip locked

 limitlimit 11

))

updateupdate request_reply r request_reply r

setset state state == 'processing''processing'

fromfrom available_message am available_message am

 wherewhere r r..id id == am am..idid

 returningreturning r r..requestrequest,, pg_try_advisory_lock pg_try_advisory_lock((rr..idid)) asas lo lo

The `available_message` CTE selects the message `for update

skip locked`. This prevents other listeners from grabbing and

processing the message.

The `update` query acquires the advisory lock, which will block the

sender until the response is ready.

After the handler processes the request, it can run the final

`update` and set the `response`:

withwith updated updated asas ((

 updateupdate request_reply request_reply

 setset state state == 'replied''replied',, response response == $ $22

 wherewhere id id == $ $11

 returningreturning id id

))

selectselect pg_advisory_unlock pg_advisory_unlock((idid)) fromfrom updated updated;;

When the update is complete, you can unlock the advisory lock,

which unblocks the sender so it can retrieve the response and return.

See it in action

I built a fun demo demonstrating a request-reply that generates

vector embeddings for a table in the database. You could run a

background job with `pg_cron` that populates missing embeddings.

To make `request()/await_reply()` work well for queries

running directly in Postgres, you can use a procedure. A procedure

lets you orchestrate function calls. Importantly, you can commit in

the middle of a procedure. So, you can:

���Call `request()`.

���`commit`, which makes the new entry in `request_reply`

available to all senders.

���`await_reply()`.

���Handle the reply.

First, create a table of `dune_quotes` and insert some data into it:

https://github.com/sequinstream/demo-pg-request-reply?ref=blog.sequinstream.com

createcreate tabletable ifif notnot existsexists dune_quotes dune_quotes ((

 id id serialserial primaryprimary keykey,,

 quote quote texttext notnot nullnull,,

 embedding vector embedding vector((15361536))

));;

insertinsert intointo dune_quotes dune_quotes ((quotequote)) valuesvalues

 (('i must not fear. fear is the mind-killer. fear is 'i must not fear. fear is the mind-killer. fear is

 (('he who controls the spice controls the universe.''he who controls the spice controls the universe.'

 (('the mystery of life isn''t a problem to solve, bu'the mystery of life isn''t a problem to solve, bu

Next, create a procedure that will generate embeddings for

`dune_quotes` that have a `null` `embedding`:

createcreate oror replacereplace procedureprocedure process_dune_quote_embeddin process_dune_quote_embeddin

declaredeclare

 quote_record record quote_record record;;

 request_id request_id intint;;

 embedding_json json embedding_json json;;

 embedding_array embedding_array floatfloat[[]];;

beginbegin

 -- select quotes without embeddings-- select quotes without embeddings

 forfor quote_record quote_record inin selectselect id id,, quote quote fromfrom dune_quot dune_quot

 -- request embedding-- request embedding

 request_id : request_id :== request request(('embeddings''embeddings',, quote_recor quote_recor

 commitcommit;;

 -- wait for and retrieve the embedding-- wait for and retrieve the embedding

 embedding_json : embedding_json :== await_reply await_reply((request_idrequest_id))::json::json

 -- parse the json response and convert to array-- parse the json response and convert to array

 -- assuming the embedding is directly an array -- assuming the embedding is directly an array

 selectselect array array((selectselect elem:: elem::floatfloat

 fromfrom json_array_elements_text json_array_elements_text((embedembed

 intointo embedding_array embedding_array;;

 -- update the quote with the new embedding-- update the quote with the new embedding

 updateupdate dune_quotes dune_quotes

 setset embedding embedding == embedding_array::vector embedding_array::vector((15361536))

 wherewhere id id == quote_record quote_record..idid;;

 -- commit after each update to make it visible -- commit after each update to make it visible

 commitcommit;;

 endend looploop;;

endend;;

$$ $$ languagelanguage plpgsql plpgsql;;

The bones of this proof of concept are available on GitHub.

The neat part about this example is that we can do all this without

needing an extension like pgsql-http. We can use native Postgres

components and move all other logic over to our application.

https://github.com/sequinstream/demo-pg-request-reply?ref=blog.sequinstream.com

Sequin sends Postgres changes to your

applications and services. It's designed to

never miss an insert, update, or delete and

provide exactly-once processing of all

changes.

Try Sequin now to add async triggers to your

existing Postgres tables. Or, Sequin can add

streaming mechanics to Postgres to do the

work of SQS / Kafka without the operational

overhead.

© Sequin Labs, Inc. 2024

https://github.com/sequinstream/sequin
mailto:founders@sequinstream.com
https://console.sequinstream.com/register

