
OlegWock
Blog Curated Bits About Personal

Features of your font
you had no idea about
Published at 10 September 2024

In the previous article () we covered the basic

steps to improve the typography in your apps. Today I'd like to expand a bit more on the topic

of fonts and what you can get out of a high-quality font (paid or free). High-quality fonts often

come with a full bag of goodies, it will be unwise to not use what the type designer gifted (or

sold) to us.

The minimal package you would expect from a font includes different weights and maybe italic.

Traditionally, it was made by creating a separate font file. One for Helvetica Regular, one for

Helvetica Bold, and separate files for Helvetica Regular Italic and Helvetica Bold Italic. But with

Typography

Quick guide to web typography for developers

https://sinja.io/
https://sinja.io/blog
https://sinja.io/curated-bits
https://sinja.io/about
https://sinja.io/personal
https://sinja.io/blog/typography
https://sinja.io/blog/web-typography-quick-guide

OpenType features, we can pack all those fonts into one file, along with a bunch of other

goodies. We'll cover some of the most interesting features, but there are more.

Available features will vary from font to font, to check what is included with your font, use

.

Table of contents

Variable axes
OpenType fonts can have one or more axes, and by changing their value, we can change the

font's appearance. Axes names (and other OpenType features) consist of 4 characters, and the

most popular one is wght which controls the font's weight.

wght axis

Sphinx of black quartz, judge my vow.

100 900

There are a couple of other common axes: wdth for width, slnt for slant, ital for italic, and

opsz for optical size. But in addition to standard axes, the type designer can create custom

axes, which further extends the creative potential of the typeface.

Wakamai Fondue

Variable axes

Alternates

Stylistic alternates

Swashes

Numerals

Small caps

Contextual alternates

Further reading

https://wakamaifondue.com/?ref=sinja.io

There are two ways to manipulate variable font axes. An axis might have its own CSS property,

like font-weight which translates into wght axis. For other axes, including custom ones, you

will need to use font-variation-settings property.

1 .cls1 {

2 font-weight: 451; /* wght axis */

3 font-stretch: condensed; /* wdth axis */

4 font-style: italic; /* ital axis */

5 font-style: oblique 40deg; /* slnt axis */

6 font-optical-sizing: none; /* opsz axis */

7 }

8

9 .cls2 {

10 font-variation-settings: 'MONO' 0.25;

11 }

When possible, you should prefer to use specific properties provided by CSS rather than using

font-variation-settings for everything. A major problem with font-variation-settings is

that it doesn't play well with cascading, as defining this property on an element completely

overwrites values inherited from the parent element.

Imagine a situation: you have a paragraph of text for which you want to set a specific width,

and it contains an element to which you also want to apply a specific slant. Normally, you

should use font-stretch and font-style , but for the sake of example, let's assume you need

to use font-variation-settings . You might try something like this:

1 p {

2 font-variation-settings: 'wdth' 75;

3 }

4

5 .emphasis {

6 font-variation-settings: 'slnt' -5;

7 }

The emphasis element will have the correct slant; however, its width will be reset to the

default one. The correct way to set variation settings for the element would be to define

values for both axes explicitly.

1 .emphasis {

2 font-variation-settings: 'wdth' 75, 'slnt' -5;

3 }

To work around this, we can use CSS variables.

1 :root {

2 --wdth: 100;

3 --slnt: 0;

4 }

5

6 * {

7 font-variation-settings: 'wdth' var(--wdth), 'slnt' var(--slnt);

8 }

9

10 p {

11 --wdth: 75;

12 }

13

14 .emphasis {

15 --slnt: -5;

16 }

On you can play with a lot of different variable fonts, some of them have very

interesting and unusual axes.

Besides axes, there are pre-defined OpenType features that can be turned on or off (and

sometimes they also allow you to select one of the pre-defined values). Let's talk about the

most popular ones.

Alternates
Fonts can contain alternative glyphs for certain characters. This includes different styles of

numbers, swashes, ligatures, and just an alternative style for certain characters. But what

exactly is available will vary from font to font.

Stylistic alternates
Starting with stylistic alternates. Those are just alternative forms of letters that you can

enable. In some fonts, it might change how 'I', 'l', and '1' look to disambiguate them, in other

fonts, it just replaces single-story 'a' and 'g' with double-story alternates. There are 3 different

OpenType features related to stylistic alternates that somewhat overlap.

Firstly, there is salt to enable stylistic alternates for all letters. It's this one setting that will

likely alter how 'a' and 'g' look.

Then there are stylistic sets. They are named ss01 , ss02 , and so on. They replace only a

subset of characters with alternates. Sets might have a certain purpose beyond just changing

visual appearance, for example, typeface Inter has the which

changes the appearance of characters that might look too similar to other ones, like 'I' and 'l'

or '0' and 'O'.

this website

stylistic set 'Disambiguation'

https://v-fonts.com/?ref=sinja.io
https://rsms.me/inter/#features/ss02?ref=sinja.io

Finally, there are character variants (cv01 , cv02 , and so on) that replace just a

single character.

There are two ways to use alternates on the web. You can enable OpenType features directly,

similar to how we directly manipulate axes:

1 h1, h2, h3 {

2 font-feature-settings: 'salt' on, 'ss01' on, 'cv06' on;

3 }

This is very similar to font-variation-settings and has the same downside with inheritance.

Another (newer) option is to use the "native" CSS property font-variant-alternates . To use

it, we first need to map user-defined values to values that will be passed to the OpenType font:

1 /* This is set per font */

2 @font-feature-values "Work Sans" {

3 /* salt feature */

4 @stylistic {

5 /*

6 'on' is the value which we'll use in styles, while

7 1 is what will be passed to OpenType font.

8 */

9 on: 1;

10 off: 0;

11 }

12

13 /* ss01, ss02, ... */

14 @styleset {

15 /*

16 alt-digits is the name for the set we'll use in styles,

17 while 1 is its number (translates to ss01)

18 */

19 alt-digits: 1;

20 disambiguation: 2;

21 }

22

23 /* cv01, cv02, ... */

24 @character-variant {

25 /*

26 This notation is a bit different: here, simplified-u will be used

27 in styles, but 6 means that it should enable sixth character

28 variant, OpenType feature cv06

29 */

30 simplified-u: 6;

31 compact-f: 12

32 }

33 }

34

35 h1, h2, h3 {

36 font-variant-alternates: stylistic(on) styleset(alt-digits) character-variant(compact

37 }

And while it's definitely more readable, this approach has the same problem with cascading,

as defining font-variant-alternates on an element will overwrite the parent value instead

of extending it, so in any case, you'll need to do tricks with CSS variables to work around

this issue.

Swashes
Some fonts come with swashes, which can be used to add a bit of character to titles. Similar to

stylistic alternates, there are two ways to enable swashes:

1 h1, h2, h3 {

2 font-feature-settings: 'swsh' on;

3 }

1 @font-feature-values "Work Sans" {

2 @swash {

3 on: 1;

4 off: 0;

5 }

6 }

7

8 h1, h2, h3 {

9 font-variant-alternates: swash(on);

10 }

Work Sans Regular

Work Sans Regular

Numerals
One font can have different sets of glyphs for numbers. Generally, numerals can be either lining

or old-style and tabular or proportional. Those two can combine, so you can have, for

example, old-style tabular numerals.

Tabular numerals all have the same width. Like a monospaced font, but only for numerals.

Since such numerals line up when typed on multiple lines, they're useful in, well, tabular data:

tables, bills, reports, you name it. Proportional numerals have different width, so 1 and 6 will

take a different amount of space. They are used for numbers in blocks of text, as their width

and spacing doesn't contrast with the surrounding text.

Tabular numerals: 115679141.42

Tabular numerals again: 46285.07

Proportional numerals: 115679141.42

Lining numerals are aligned by baseline at the bottom, and they all have the same height,

usually the same as a capital letter. Proportional lining numerals are the best default choice, as

they look good in both UI elements and body text. However, due to their size and alignment,

some designers prefer not to use lining numerals for body text, as they think such numerals

look like capital letters at a glance, and multiple capitals together draw a bit too much

attention. They prefer to use old-style numerals: such numerals have a height of a lowercase

letter and have descenders and ascenders (parts of the glyph that stick upwards or

downwards) which allows them to better blend with surrounding text.

Lining numerals: 36824

Old-style numerals: 36824

Which numerals will be used by default depends on your font. To explicitly set desired style,

use font-variant-numeric property:

1 table {

2 font-variant-numeric: tabular-nums;

3 }

4

5 /* You can combine values too */

6 .foo {

7 font-variant-numeric: tabular-nums oldstyle-nums;

8 }

Small caps
I mentioned that multiple capital letters draw a bit too much attention when surrounded by

body text. Exactly how noticeable they will be depends on the font. For example, in Work Sans,

it's not hugely noticeable, but still works as an eye-catcher.

To solve this problem, some fonts bundle a special variant of letters called small caps. To

confuse you a bit, small capitals replace lowercase letters, instead of, well, capitals, so you can

still differentiate case when text is set in small caps. Or you can force the browser to

transform capitals into small capitals too.

We love code names! We have code names for projects, teams,

and even documents. For example, the current project's schedule

is tracked on the SCHDL2 page, the successor to the SCHDL page.

Well, we're still working on reducing duplication...

We love code names! We have code names for projects, teams,

and even documents. For example, the current project's schedule

is tracked on the SCHDL2 page, the successor to the SCHDL page.

Well, we're still working on reducing duplication...

To make the browser use small caps for text, you need to specify the font-variant-

caps property.

1 .small-caps {

2 /* Will turn lowercase into small caps */

3 font-variant-caps: small-caps;

4 }

5

6 .all-small-caps {

7 /* Will turn everything in small caps */

8 font-variant-caps: all-small-caps;

9 }

If the current font doesn't have small caps, the browser will try to synthesize them from

normal capital letters. If you want to disable this behavior, use this CSS property

1 :root {

2 /* Disable all synthesis: missing weights, italic, small caps, etc.*/

3 font-synthesis: none;

4

5 /* Disable only small caps synthesis */

6 font-synthesis-small-caps: none;

7 }

Contextual alternates
Contextual alternates is one of my favorite font features, mainly because it doesn't require

extra work from the developer or from the person typing the text, it just works. Well, only if

typeface designer added contextual alternates to their font, of course. This feature replaces

character glyphs depending on the surrounding characters.

This can be used to replace -> with a proper arrow. Or to adjust the position of @ when it's in

between uppercase letters. Inter does this :

And you don't even need to enable them manually, contextual alternates are enabled by

default. But if you want to disable them, there is a font-variant-ligatures property:

1 :root {

2 font-variant-ligatures: no-contextual;

3 }

really well

https://rsms.me/inter/#features/calt?ref=sinja.io

Further reading
That's all for today, but we have only scratched the surface. OpenType has a lot more features,

like ornaments, ordinals, fractions, random, historical forms, ligatures, and so much more. If

you want to go deeper into the woods, here is a showcasing some of OpenType

features. And check out by Roel Nieskens about OpenType features.

 is an excellent resource to learn more about variable fonts.

Published at 10 September 2024

Was this interesting or useful?

I publish a with articles I found interesting and announces of my new

posts. You can leave your email and get new issues delivered to your inbox!

Alternatively you can subscribe to my to know about new posts.

Or follow me on , where I sometimes post about new articles, my pet projects,

and web dev in general.

If you really like the article, you can , and I'll buy myself tasty coffee to

write even more.

You may also like:

nice website

this talk A Variable Fonts

Primer

newsletter

RSS feed

Twitter

give me monies

Quick guide to web typography for developers
80/20 guide on how to make your blog posts look pretty, for free.

Typography

Direction-aware animations in Framer Motion
Carousels, multistep forms and navigation between screens – they all profit from nice

direction-aware animation. In this recipe, you'll learn how you can implement some.

Framer Motion recipes

https://otf.thien.do/hlig?ref=sinja.io
https://www.youtube.com/watch?v=TreBK-EyACQ&ref=sinja.io
https://variablefonts.io/?ref=sinja.io
https://variablefonts.io/?ref=sinja.io
https://sinja.io/curated-bits?open-details=true
https://sinja.io/rss
https://twitter.com/OlegWock?ref=sinja.io
https://sinja.io/support
https://sinja.io/blog/web-typography-quick-guide
https://sinja.io/blog/direction-aware-animations-in-framer-motion

Animating Radix Primitives with Framer Motion
I always forgot how to properly pair Radix Primitives and Framer Motion, so I

wrote this guide!

Framer Motion recipes

Contact me

oleh@sinja.io

Links

RSS feed Support me Twitter Mastodon Github LinkedIn

https://sinja.io/blog/animating-radix-primitives-with-framer-motion
mailto:oleg@sinja.io
https://sinja.io/rss
https://sinja.io/support
https://twitter.com/OlegWock?ref=sinja.io
https://toot.works/@OlegWock?ref=sinja.io
https://github.com/OlegWock?ref=sinja.io
https://www.linkedin.com/in/olegwock/?ref=sinja.io

