
~ [blog] art uses about

Getting the most out of your Yubikey

on NixOS
July 2, 2024 ?? Views • #nix #security

I recently got myself two Yubikey 5 devices. One of them will

live on my keychain, while the second one is a backup that

doesn't leave my house.

Firefox works out of the box with the Yubikeys and I can add them

to various accounts. In addition to using them as 2fa through the

browser, I wanted to use them on the OS level as well.

For in-depth details on all of the functionality of the Yubikey,

refer to this excellent Reddit post: "What the heck is a Yubikey

and why did I buy one?": A user guide

https://joinemm.dev/
https://joinemm.dev/blog
https://joinemm.dev/blog
https://joinemm.dev/blog
https://joinemm.dev/art
https://joinemm.dev/uses
https://joinemm.dev/about
https://joinemm.dev/blog?tag=nix
https://joinemm.dev/blog?tag=nix
https://joinemm.dev/blog?tag=security
https://joinemm.dev/blog?tag=security
https://www.yubico.com/us/product/yubikey-5-series/yubikey-5-nfc/
https://www.reddit.com/r/Yubikey/comments/n8wr55/what_the_heck_is_a_Yubikey_and_why_did_i_buy_one/
https://www.reddit.com/r/Yubikey/comments/n8wr55/what_the_heck_is_a_Yubikey_and_why_did_i_buy_one/

Use cases

There are many different use cases I found for the Yubikeys. I

have marked the ones I have succesfully gotten working. Note that

I don't necessarily want or endorse the ones I have left undone.

- pam auth (sudo/login) ✅

- 2fa for websites (works out of the box) ✅

- GPG keys ✅

- SSH keys ❓

- Git commit signing ✅

- Yubikey based full disk encryption (guide) ❓

- sops secret encryption (waiting for PR) ❌

Pam module

There are two pam modules that implement Yubikey functionality:

yubico-pam and pam_u2f , the latter of which seems to be the

more modern and recommended approach. I did try yubico-pam but I

was unable to get it working.

The pam_u2f module implements the U2F (universal second

factor) protocol. The protocol was initially developed by

Yubico, Google and NXP and is nowadays hosted as an open-

standard by the FIDO Alliance. All current and most legacy

Yubikeys support the U2F protocol making this the preferred way

to use Yubikeys for user login.

I ended up using the pam_u2f module. This allows the Yubikey to

work as a replacement for sudo/login password. The configuration

is also completely declarative and I'm able to enroll my

Yubikeys, including the backup key, to another device without

actually having all of the keys with me. How is this possible?

1. Connect your Yubikey.

2. Create authorization mappings for your keys. This file works

similarly to ssh/known_hosts and is not a secret.

https://nixos.wiki/wiki/Yubikey_based_Full_Disk_Encryption_(FDE)_on_NixOS
https://github.com/getsops/sops/pull/1465

3. The command above will look like it just hangs. You have to

touch your Yubikey to continue. You will get a public key for

your Yubikey printed into the terminal. This key will be

different every time you run the command. Save it somewhere,

you will need it later.

4. Repeat steps 1-3 for your other Yubikeys.

Enable u2f in your nixos configuration:

- interactive : will prompt you with Insert your U2F device, then

press ENTER.

- cue : will print Please touch the device. when your action is

required.

Hardening

The guides for pam_u2f tell you to save the key mappings in

~/.config/u2f_keys . I would advice you don't do that as I find

it a security risk. Somehow I didn't find anyone talking about

this flaw online:

Say a bad actor has physical access to your machine (ok this is

already a pretty bad situation but it gets worse). They could

plug in their Yubikey, run the above commands, and append their

keys to your mapping file. Doing so would give them instant

escalation to sudo privileges without knowing your password.

Sounds pretty bad doesn't it!

nix-shell -p pam_u2f
pamu2fcfg -n -o pam://yubi

security.pam.u2f = {

 enable = true;
 interactive = true;

 cue = true;
};

How to mitigate this? Don't store the key mappings in user

writable location. A better place is /etc/u2f-mapping . My

configuration creates a file in the read-only /nix/store .

Sharing

If you run pamu2fcfg with the default arguments, the origin will

be pam://$HOSTNAME . This means the keys will only work on that

specific machine (or any other with the same hostname) - not what

we want - this is why I have chosen a more global origin:

pam://yubi . It can be anything you want.

Now that the keys are usable anywhere, they can be embedded into

the nixos configuration:

I am using the lib.concatStrings function to split the keys onto

multiple lines, and insert my username (a string value imported

from elsewhere) to the beginning of the line. This is only to

make it more readable and can be omitted.

Enable for sudo and login

There is only one thing left to do, enable the U2F module for any

services you wish. I have enabled it for sudo and login:

security.pam.u2f = {
 origin = "pam://yubi";

 authFile = pkgs.writeText "u2f-mappings" (lib.concatStrings [
 username

 ":<KeyHandle1>,<UserKey1>,<CoseType1>,<Options1>"
 ":<KeyHandle2>,<UserKey2>,<CoseType2>,<Options2>"

]);
};

security.pam.services = {
 login.u2fAuth = true;

 sudo.u2fAuth = true;
};

GPG keypair

Add the following to your nixos system configuration:

And the following to your home-manager configuration. Most of

this is not actually required but they are good hardening steps

(apparently...).

disable-ccid is crucial to prevent pcscd daemon and gpg-agent

conflicts.

services = {

 pcscd.enable = true;
 udev.packages = [pkgs.yubikey-personalization];

};

programs.gpg = {

 enable = true;

 # https://support.yubico.com/hc/en-us/articles/4819584884124-Resolving-GP
 scdaemonSettings = {

 disable-ccid = true;
 };

 # https://github.com/drduh/config/blob/master/gpg.conf

 settings = {
 personal-cipher-preferences = "AES256 AES192 AES";

 personal-digest-preferences = "SHA512 SHA384 SHA256";
 personal-compress-preferences = "ZLIB BZIP2 ZIP Uncompressed";

 default-preference-list = "SHA512 SHA384 SHA256 AES256 AES192 AES ZLIB
 cert-digest-algo = "SHA512";

 s2k-digest-algo = "SHA512";
 s2k-cipher-algo = "AES256";

 charset = "utf-8";
 fixed-list-mode = true;

 no-comments = true;
 no-emit-version = true;

 keyid-format = "0xlong";
 list-options = "show-uid-validity";

 verify-options = "show-uid-validity";
 with-fingerprint = true;

 require-cross-certification = true;

Follow this guide to create a GPG master key, with 3 different

subkeys: signing key, encryption key and authentication key.

After generating the keys, back them up on a USB stick. Once you

have backups, move the keys over to the Yubikey. This is all

explained in great detail in the aforementioned guide.

You can create a shell with all the packages you need to follow

the guide (assuming you already deployed the configuration

above):

If you added the public key URL onto the Yubikey, on any computer

you plug the key in, you can now fetch the public key like this:

 no-symkey-cache = true;

 use-agent = true;
 throw-keyids = true;

 };
};

services.gpg-agent = {

 enable = true;

 # https://github.com/drduh/config/blob/master/gpg-agent.conf
 defaultCacheTtl = 60;

 maxCacheTtl = 120;
 pinentryPackage = pkgs.pinentry-curses;

 extraConfig = ''
 ttyname $GPG_TTY

 '';
};

nix-shell -p yubikey-manager cryptsetup

gpg --edit-card

gpg/card> fetch
gpg/card> quit

gpg --edit-key $KEYID

gpg> trust
Your decision? 5

Do you really want to set this key to ultimate trust? (y/N) y

https://github.com/drduh/YubiKey-Guide

The Yubikey can now be used as your GPG keypair!

Git commit signing

Configure git to use your newly created GPG key to sign commits.

Using home-manager:

Now whenever you git commit it will sign with your Yubikey,

asking for the pin for the first signing after boot.

Sources

https://nixos.wiki/wiki/Yubikey

https://developers.yubico.com/pam-u2f

https://github.com/drduh/YubiKey-Guide

gpg> quit

programs.git = {

 userEmail = "same as your key identity"
 signing.key = "$KEYID";

 extraConfig.commit.gpgsign = true;
};

https://nixos.wiki/wiki/Yubikey
https://developers.yubico.com/pam-u2f
https://github.com/drduh/YubiKey-Guide

© Joonas Rautiola $2024 • Source

https://git.joinemm.dev/homepage

