
Services Company Contact Sign in Subscribe

OpenSSH Backdoors

Imagine this: an OpenSSH backdoor is discovered, maintainers

rush to push out a fixed release package, security researchers

trade technical details on mailing lists to analyze the backdoor

code. Speculation abounds on the attribution and motives of

the attacker, and the tech media pounces on the story. A near

miss of epic proportions, a blow to the fabric of trust

Ben Hawkes

Aug 23, 2024

https://isosceles.com/services.html
https://isosceles.com/company.html
https://isosceles.com/contact.html
https://blog.isosceles.com/
https://blog.isosceles.com/author/ben/

underlying open source development, a stark reminder of the

risks of supply-chain attacks. Equal measures brilliant and

devious.

If you've been paying attention to the security news recently,

your mind probably went straight to the attack on the

liblzma/xz-utils repository earlier this year, the ultimate aim of

which was an OpenSSH backdoor. However the event

described above isn't the xz-utils backdoor. It's a little-

remembered fact that the xz-utils backdoor was actually the

second time OpenSSH had a "near miss" with a backdoor

attack. T he first time was over 22 years ago, all the way back in

2002. T his blog post shares the story of that backdoor, and

what we can learn from an attack that happened over two

decades ago.

Background

T he 2002 attack was quite straightforward. Here's the original

announcement: OpenSSH Security Advisory: Trojaned

Distribution Files.

T he OpenSSH source code was hosted on ftp.openbsd.org,

and somehow it was replaced with a backdoored version.

Nobody knows exactly how this happened, but the attacker

managed to switch out the .tar.gz files for a few versions.

T here were some really good server exploits going around the

hacking scene at that time though, so there's nothing

particularly surprising about this. Fortunately though, the

backdoor didn't last long because a developer noticed an

unexpected difference in checksums. Specifically when trying

to build the backdoor on FreeBSD, the "ports" package system

ran the checksums automatically, and since ports already had

a checksum stored when the backdoor was inserted, a

https://arstechnica.com/security/2024/03/backdoor-found-in-widely-used-linux-utility-breaks-encrypted-ssh-connections/?ref=blog.isosceles.com
https://arstechnica.com/security/2024/03/backdoor-found-in-widely-used-linux-utility-breaks-encrypted-ssh-connections/?ref=blog.isosceles.com
https://marc.info/?l=bugtraq&m=102821663814127&w=2&ref=blog.isosceles.com
https://marc.info/?l=bugtraq&m=102821663814127&w=2&ref=blog.isosceles.com

mismatch occurred. If the attackers had waited until a new

version was released and immediately replaced the .tar.gz and

the checksum files at the same time, they would have had a lot

more success.

In any case, it was a simple backdoor, essentially the simplest

that you could imagine. Step one, hook the build system so

that an attacker-controlled source file would be compiled and

executed when the "configure" command was run by the

victim. Step two, have the payload connect back to a

hardcoded IP address in Australia and wait for commands to

execute on the compromised machine.

We still don't know for sure who was behind the backdoor, but

the prevailing opinion (at least among the OpenBSD

developers I talked to) seems to be that it was just some old

fashioned shenanigans. Punk kids doing punk kid things, as

was perfectly normal in 2002, and then life goes on. It certainly

wasn't the first time something like this had happened -- Wu-

FT Pd, which was the most popular ftpd in the 90s, had a very

similar thing happen back in 1993 -- but it was a good

indication of what was to come. It's an interesting historical

event, because it shares both some similarities and

differences with the modern xz-utils OpenSSH backdoor

attempt, and by prying those apart we can hopefully find some

useful insights.

Similarities

T he obvious similarity is that both the historical and modern

events targeted OpenSSH. T hat's for good reason. OpenSSH

is clearly in the upper echelon of targets for vulnerability

research because if you get a pre-authentication remote

exploit working for OpenSSH you essentially have a skeleton

key for the Internet and everything else comes tumbling down

from that initial access. It turns out that there aren't many

remote OpenSSH exploits left though, it's been about 20 years

since the last really good one. So in lieu of finding a good bug,

the next best thing is to insert one.

Inserting an exploitable bug (a "bugdoor"), one that's subtle

enough that developers might not even notice during code

review, is probably the winning move. However, it's interesting

to note that in both 2002 and 2024 we got a backdoor rather

than a bugdoor. T hat's probably because exploits are hard, and

server-side exploits are really hard. Given how much work it is

to be in a position to change the source code in the first place,

it's not entirely surprising that attackers want to go with a

reliable option. T he counter-argument is that we may just

never get to see any bugdoors because they never get caught

(or if they do, they don't get flagged as subterfuge), so we're

biased towards the events that we can actually detect.

T here are other similarities. Both the 2002 and 2024 events

targeted the build system, for example. T his also makes sense,

because build systems are a perfect mix of inscrutability and

expressiveness. T here's really no constraints on what you can

do with most build systems. T hey have to be like this in order to

make everything work everywhere that it's supposed to.

Making something compile on Linux, MacOS, and Windows

simultaneously is no easy feat. Add in support for multiple

architectures and legacy versions, and well... you see where I'm

going with this. T he guiding design principle for build systems

has been "just make it work", and so they end up being a

complicated mess of directives, rules, variables, and

command invocations. As long as they're working correctly, I

suspect very few people are paying close attention to the

contents of their build scripts, and that includes the

developers/maintainers themselves. It's the ideal place to

insert the first hook for a backdoor, hiding in plain sight.

T he same attributes that make OpenSSH a very attractive

target also make it a very difficult target, however. Everyone

uses it, and so the chances that someone notices that

something fishy is going on is quite high. Indeed, both attacks

were found relatively soon after they were attempted. T he

2002 attack was found by a developer noticing that the

checksums provided didn't match the source code they had

downloaded, and the 2024 attack was found by a developer

after diligent exploration of a performance issue. T he "many

eyes" theory of open source security isn't popular right now,

but it certainly seems like bigger targets have smaller margins

for error.

T he last similarity is that both events were perpetrated by

unknown attackers, e.g. they were caught in the act, but never

attributed to any specific threat actor or country. T his might

not seem like much, but I suspect the key observation is that

our usual approaches to attribution don't work very well for

supply chain attacks. T he sample size is tiny, the attacker's

targeting is opaque, and each event sees a high degree of

customization. For an attacker this is quite appealing, since

either the attack succeeds or it fails in such a way that nobody

can figure out exactly who was responsible.

Differences

Despite the similarities, these two attacks are fundamentally

on a different level in terms of their intent and execution. It's

interesting to see how things have evolved. If you want an

attack like this to be successful, everything has to go

perfectly. Clearly then the xz-utils backdoor wasn't perfect,

but it did do a lot of things right, and came a lot closer to

succeeding than the 2002 attack. T he main difference that

explains this seems to be in the motivation and intent of the

perpetrators.

T he consensus is that the attackers in 2002 were motivated by

having fun and causing mayhem, and they probably didn't mind

getting caught all that much. If you're thinking in terms of

bragging rights, getting caught might actually be a feature

rather than a bug. In contrast, the attackers in 2024 seem to

have been given a very specific task, and clearly intended to

actually use the backdoor to achieve their goals. In other

words, the xz-utils backdoor was designed to be an

intelligence capability, whereas the 2002 attack was more

"performance art" than "persistent threat".

One of the key technical differences is that the xz-utils

backdoor was targeting the build artifact rather than the build

system. T he worst-case outcome of the 2002 attack was

compromising whichever systems happened to compile

OpenSSH. If the xz backdoor had been successful however,

then eventually every single machine running OpenSSH on a

systemd-based Linux distribution could have been

compromised at any time or place of the attacker's choosing.

T hat word "choice" is important here. T he xz-utils backdoor

gave attackers optionality: they could choose to deploy the

backdoor's hidden features in a targeted manner. When

compared to triggering a reverse shell automatically, this

greatly reduces the risk that the backdoor is detected, and

allows the backdoor to be used in a surgical manner. T his is a

conscious decision that the attackers made, because the

alternative of compromising every system that their code was

run on was also certainly an option here.

It's also interesting how indirect the 2024 attack was. Instead

of targeting OpenSSH itself, they noticed that modern Linux

distributions inserted an unexpected dependency on liblzma

into OpenSSH. T his was the path to victory – instead of

targeting a mature and well-funded project that's maintained

by world renowned security experts, go for the underfunded

and understaffed utility library that no one even realized was in

the critical path. Defenders think in lists, attackers think in

graphs.

Aside from this, another small innovation stood out to me.

Rather than inserting obfuscated shell scripts, hiding in a C file

(like the 2002 attack did), or fetching a payload over the

network, the xz backdoor's payload was pre-staged in a binary-

only test file. I think this was demonstrated to be an effective

approach given that nobody noticed the payload in the xz-utils

source code repository until after the backdoor had been

detected at runtime using performance analysis. If there

hadn't been a performance regression, and if the attacker's

had been slightly less aggressive in their social maneuvering, I

suspect both the "hook" and the payload may have gone

undetected for a long time.

T he final big difference is in the attacker's methodology. In the

2002 attack, we saw the attackers go straight for the

infrastructure that was hosting OpenSSH. In contrast, the xz

backdoor was the culmination of an extended social

engineering campaign that led to the attacker becoming a

trusted part of the core development team. Any way you look

at it, that's an impressive effort.

Analysis

https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md?ref=blog.isosceles.com
https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md?ref=blog.isosceles.com

T here's a lot to unpack here. Supply chain attacks have

certainly evolved, but... not by as much as expected? For a

moment, let's put aside the "malicious insider" approach used

by the xz-utils attackers and focus on the "attack the

infrastructure" approach instead. If you look at the details of

the 2002 attack, at a very fundamental level there's nothing

that would stop this attack from succeeding today. With a little

bit more finesse and patience, an infrastructure-focused

attack that aims to subvert a source code distribution is still

certainly plausible.

My favorite example of this is zlib. Just like xz-utils, it's a

compression library. Arguably it's the compression library,

because zlib is absolutely everywhere – including in OpenSSH.

New versions of their source code are distributed from

zlib.net, and the server running zlib.net is hosted by a small

company in Michigan called a2hosting.com where a managed

VPS starts at $26.95/month. T his hosting company is

particularly fond of using CPanel and exim, both of which are

enabled for zlib.net.

T hat means the supply chain integrity for practically

everything relies on the integrity of a2hosting.com and the

absence of any remote exploits in CPanel or exim. T he track

record here isn't exactly encouraging, and I haven't even got to

Pure-FT PD, Apache httpd, or Dovecot (and this is just the stuff

that's directly on zlib.net, we're not even considering how

a2hosting.com itself might be attacked). Find a good

vulnerability in any one of these projects, or a way to backdoor

them for that matter, and you have a good shot at

backdooring the zlib source code distribution.

https://www.a2hosting.com/?ref=blog.isosceles.com
https://blog.qualys.com/vulnerabilities-threat-research/2021/05/04/21nails-multiple-vulnerabilities-in-exim-mail-server?ref=blog.isosceles.com
https://blog.qualys.com/vulnerabilities-threat-research/2021/05/04/21nails-multiple-vulnerabilities-in-exim-mail-server?ref=blog.isosceles.com

T hings have improved for zlib in recent years, because at least

they have a dedicated host or VPS now. For a long time zlib.net

was backed by PHP shared hosting (e.g. the site was shared

with many other websites and anyone could pay to be resident

on the same machine). T his was a bit of a running joke among

vulnerability researchers: since finding a real bug in zlib is

extraordinarily difficult, inserting one in the code base when

the maintainer announced a new release was probably the path

of least resistance.

T he point of this isn't to pick on zlib. T heir maintainer is world

class (I had the privilege of reading their Huffman table code

during this analysis), and they're doing a great job overall. T he

problem here isn't unique to zlib, or xz-utils, or OpenSSH.

Everyone is exposed in fairly similar ways. T he point is that

when you look at the cumulative risk, we're in really bad shape.

I'm not usually prone to exaggeration, but our current

exposure to supply chain attacks is somewhat alarmingly high.

Let's think about this. If you compile OpenSSH from source,

you end up with code (libraries and executables) from about 5

different distro packages running in your address space. Not

too bad. In practice though, everyone runs a systemd-based

Linux distribution of some sort – in which case you end up

running code from around 30 different packages in your

OpenSSH address space (including our friends xz and zlib of

course). T hat's already starting to get uncomfortable.

But it doesn't stop there. While both the historical attack and

the xz-utils attackers tried to go straight for OpenSSH, there's

really no need. If you can get your backdoor running as root

somewhere on the system, then you can inject yourself into

the sshd process. It's one extra step, but not a very difficult

https://blog.isosceles.com/the-webp-0day/

one. On a stock Ubuntu Server 22.04 system after boot, there

is code from 97 packages running as root (that's 16% of all the

packages installed by default). On my daily driver Linux

desktop (where I use remote access via OpenSSH almost every

day), there's code from a remarkable 384 packages running as

root.

Is this really a defensible security boundary? Hundreds of

projects with distinct cultures, motivations, funding,

expertise, and resources? Whether it's an infrastructure-

focused attack like 2002, or a social engineering attack like

2024, it doesn't really matter. T hrow in the angle of targeting

and compromising individual developers for that matter.

Regardless, I'm not convinced we can defend against this with

the way we're currently thinking about operating system

design.

Final Thoughts

T he supply chain attacks from 20 years ago still look like

they're viable today, and we're further behind in our defensive

posture than we'd all like. Truthfully we've mostly gotten away

with it up until now because there's been a steady supply of

exploitable vulnerabilities that have enabled the attacker's to

achieve their goals in other ways. However in a world where

exploitable vulnerabilities become sparse (and there are some

initial signs that this is happening), it's not unreasonable to

think that attackers will pursue supply chain attacks at a much

higher level. If that's the case, we're not prepared for it yet.

T he answer will inevitably involve attack surface reduction and

compartmentalization. T hat means making a conscious effort

to reduce the amount of code we have running in remotely

exposed processes or at high privilege levels like root. T his

means accelerating our deployment of sandboxing. We used

to think of sandboxing as only applicable to the parts of the

codebase that handled untrusted data – image parsers, video

decoders, JavaScript engines, and so on. In a world where it's

the code rather than the data that's untrusted, the goal should

be to reorient toward system designs where all code is

constrained to least privilege, and where there are technical

controls in place that enforce that.

Fortunately there's some positive steps in this direction, at

least for Linux. On Ubuntu 24.04 you can no longer find liblzma

in the OpenSSH address space, on Android almost every

process is constrained by a mix of SELinux and seccomp-bpf,

and on recent Linux kernels we now have support for a

promising technology called landlock that will allow even

unprivileged apps to run in a sandbox. It takes about 250 lines

of code to write a landlock sandbox for "make" that would

prevent the 2002 attack.

With the xz-utils backdoor we learnt that there is an

extraordinary willingness to invest time, money, and other

resources into supply chain attacks. T his feels different now.

T he stakes have changed. T here's lots of work to do, and it's

going to be a long road to get to where we really need to be. I

suspect that there may need to be some fairly radical changes

around how we think about operating system design and

application development along the way.

T he good news is that there seems to be a lot of interest in

matching the attacker's enthusiasm on the defensive side of

supply-chain security. It may not seem like much, but interest

and enthusiasm is a great start – and it's more than we had 20

years ago.

https://docs.kernel.org/security/landlock.html?ref=blog.isosceles.com

← Previous

Isosceles Blog © 2024. Powered by Ghost

https://blog.isosceles.com/robots-dream-of-root-shells/
https://ghost.org/

