
Against Names
Home Blog

Aug 12 2024

There’s an old saying:

“There are only two hard things in Computer Science: cache invalidation and

naming things.

― Phil Karlton”

I also appreciate the joke version that adds “and off by one errors.”

Lately, I’ve been thinking about this saying, combined with another old joke:

““The patient says, “Doctor, it hurts when I do this.” The doctor says, “Then

don’t do that!”

― Henny Youngman”

Specifically, if naming things is so hard… why do we insist on doing it all the

time?

Now, I am not actually claiming we should stop giving things names. But I have

had at least two situations recently where I previously found names to be kinda

critical, and then I changed to systems which didn’t use names, and I think it

improved the situation.

One of the most famous examples of not giving something a name,

lambdas/closures, took some time to catch on. But many folks already recognize

that naming every single function isn’t always neccesary. I wonder if there are

more circumstances where I’ve been naming things where I didn’t actually have

to.

Anyway, here’s my two recent examples:

Nameless Branches

https://steveklabnik.com/
https://steveklabnik.com/writing

I haven’t written much about it on my blog yet, but I’m fully converted away from

git to jj. I’ll say more about this in the future, but one major difference between

the two is that jj has anonymous branches. If, like me, you are a huge fan of git,

this sounds like a contradiction. After all, the whole thing about branches are that

they’re a name for some point in the DAG. How do you have a nameless name?

Here’s some output from `jj log`:

Here’s some sample output from jj log:

 $ jj log --limit 5

 @ pzoqtwuv steve@steveklabnik.com 2024-03-01 15:06:59.000 -06:00 9353442

 │ added some cool new feature

 │ ◉ xrslwzvq steve@steveklabnik.com 2024-02-29 23:06:23.000 -06:00 a70d4

 ├─╯ create hello and goodbye functions

 │ ◉ yykpmnuq steve@steveklabnik.com 2024-02-29 23:03:22.000 -06:00 21028

 ├─╯ add better documentation

 ◉ ootnlvpt steve@steveklabnik.com 2024-02-28 23:26:44.000 -06:00 b5db794

 │ only print hello world

 ◉ nmptruqn steve@steveklabnik.com 2024-02-28 23:09:11.000 -06:00 90a2e97

 │ refactor printing

Here, we are working on change `pzoqtwuv`. (`@` means the working copy.) There

are colors in the real CLI to make the differences more obvious, and to show you

unique prefixes, so for example, you probably only need `p` or `pz` instead of

`pzoqtwuv` to uniquely identify the change. I’ll use the full IDs since there’s no

syntax highlighting here.

We have two anonymous branches here. They have the change IDs of `xrslwzvq`

and `yykpmnuq`. The log output shows the summary line of their messages, so we

can see “create hello and goodbye functions” on one branch, and “add better

documentation” on the other.

You don’t need an additional branch name: the change ID is already there. If you

want to add even more better documentation, `jj new yykpmnuq` (or again, likely

`jj new yy` in practice) and you’re off to the races. (jj new makes a new change

off of the parent you specify.)

(And if you’re in a larger repo with more outstanding branches, you can ask `jj

log` to show specific subsets of commits. It has a powerful DSL that lets you do

https://github.com/martinvonz/jj

so. For example, say you only want to see your commits, `jj log -r 'mine()'`

can do that for you.)

That’s all there is to it. We already have the commit messages and IDs, giving an

additional identifier doesn’t help that much. In practice, I haven’t missed named

branches at all. And in fact, I kind of really appreciate not bothering to come up

with a name, and then eventually remembering to delete that name once the PR

lands, stuff like that. Life is easier.

Utility CSS

Another technology I have learned recently is tailwind. But Tailwind is just one

way of doing a technique that has a few names, I’m going to go with “utility CSS”.

The idea is in opposition to “semantic CSS.” To crib an example from a blog post

by the author of Tailwind (which does a better job of thoroughly explaining why

doing utility CSS is a good thing, you should go read it), semantic CSS is when

you do this:

<style>

 .greeting {

 text-align: center;

 }

</style>

<p class="greeting">Hello there!</p>

Whereas, with Tailwind, you end up instead having something like this:

<p class="text-center">Hello there!</p>

We don’t have a new semantic name `greeting`, but instead describe what we

want to be done to our element via a utility class.

So the thing is, as a previous semantic CSS enjoyer, this feels like using inline

styling. But there’s a few significant differences. The first one is, you’re not

writing plain CSS, you are re-using building blocks that are defined for you. The

abstraction is in building those utility classes. This means you’re not writing new

https://tailwindcss.com/
https://adamwathan.me/css-utility-classes-and-separation-of-concerns/
https://adamwathan.me/css-utility-classes-and-separation-of-concerns/

CSS when you need to add functionality, which to me is a great sign that the

abstraction is working.

It’s also that there is some sleight of hand going on here, as we do, on another

level. An objection that gets raised to doing things this way is “what happens

when you need to update a bunch of similar styles?” And the answer for that is

components. That is, it’s not so much that utility CSS says that semantic names

are bad, it’s that semantic names at the tag level are the wrong level of

abstraction to use names. To sort of mix metaphors, consider the lambda/closure

example. Here’s a random function in Rust:

fn calculate(list: &[i32]) -> i32 {

 list.into_iter()

 .filter(|i| **i % 2 == 0)

 .sum()

}

The `**` is unfortunate, but this function takes a list of numbers, selects for the

even ones, and then sums them. Here, we have a closure, the argument to

`filter`, but it’s inside a named function, `calculate`. This is what using Tailwind

feels like to me, we use names for higher level concepts (components), and then

keep things semantically anonymous for some of the tasks inside of them

(markup).

Heck, even the most pro-semantic-styles folks don’t advocate that you must give

every single element a class. Everyone recognizes the value of anonymous things

sometimes, it’s just a matter of what level of abstraction deserves to get named.

