
July 16, 2024

Why German Strings are
Everywhere
Many data processing systems have

adapted our custom string format. Find out

what makes it so special and why it is so

relevant to them.

Lukas Vogel

German Strings
Strings are conceptually very simple: It’s essentially just a sequence of characters,

right? Why, then, does every programming language have their own slightly

different string implementation? It turns out that there is a lot more to a string than

“just a sequence of characters”1.

We’re no different and built our own custom string type that is highly optimized for

data processing. Even though we didn’t expect it when we first wrote about it in our

inaugural Umbra research paper, a lot of new systems adopted our format. They are

now implemented in DuckDB, Apache Arrow, Polars, and Facebook Velox.

In this blog post, we’d like to tell you more about the advantages of our so-called

“German Strings” and the tradeoffs we made.

But first, let’s take a step back and take a look at how strings are commonly

implemented.

How C does it

Contents

How C does it

How C++ does it

Can we do better?

Most strings

are short

Strings aren’t

usually changed

all that often

We usually

only look at a

small subset of

the string

German Strings

Let’s dig in: The

Anatomy of a

mailto:lukas@cedardb.com
mailto:lukas@cedardb.com
mailto:lukas@cedardb.com
mailto:lukas@cedardb.com
mailto:lukas@cedardb.com
mailto:lukas@cedardb.com
mailto:lukas@cedardb.com
https://en.wikipedia.org/wiki/String_(computer_science)#String_datatypes
https://xkcd.com/927/
https://db.in.tum.de/~freitag/papers/p29-neumann-cidr20.pdf
https://github.com/duckdb/duckdb/blob/main/src/include/duckdb/common/types/string_type.hpp
https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-view-layout
https://pola.rs/posts/polars-string-type/
https://15721.courses.cs.cmu.edu/spring2023/slides/23-velox.pdf
https://cedardb.com/
https://cedardb.com/

In C, strings are just a sequence of bytes with the vague promise that a \0 byte

will terminate the string at some point.

H e l l o _ W o r l d \0

This is a very simple model conceptually, but very cumbersome in practice:

What if your string is not terminated? If you’re not careful, you can read beyond

the intended end of the string, a huge security problem!

Just calculating the length of the string forces you to iterate over the whole

thing.

What if we want to extend the string? We have to allocate new memory, move

it there and free the old location all by ourselves.

How C++ does it

C++ exposes much nicer strings through its standard library. The C++ standard

doesn’t enforce a specific implementation, but here’s how libc++ does it:

capacity

64 bit

size

64 bit 64 bit

ptr

H e l l o _ W o r l d \0

Each string object stores its size (already better than C!), a pointer to the actual

payload, and the capacity of the buffer in which the data is stored. You’re free to

append to the string “for free” as long as the resulting string is still shorter than the

buffer capacity and the string will take care of allocating a larger buffer and freeing

the old one when it grows too much: std::string s are mutable.

This string implementation also allows for the very important “short string

optimization”: A short enough string can be stored “in place”, i.e., we set a specific bit

in the capacity field and the remainder of capacity as well as size and

ptr become the string itself. This way we save on allocating a buffer and a pointer

dereference each time we access the string. An optimization that’s impossible in

Rust, by the way ;).

If you’re interested in a more in-depth overview, take a look at Raymond Chen’s very

detailed blog post about various std::string implementations

Can we do better?

German String

Short string

representation

Long string

representation

Distinguishing

between

representations

Conclusion

https://joellaity.com/2020/01/31/string.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html
https://devblogs.microsoft.com/oldnewthing/?p=109742
https://devblogs.microsoft.com/oldnewthing/?p=109742
https://cedardb.com/

C++, especially with short string optimization, already does quite well. However, if

you know your use case, it turns out that you can do much better2.

While building CedarDB, we made the following observations:

Most strings are short

Despite being able to store arbitrary amounts of text, most people store fairly short

and predictable data in their strings (as reported by Vogelsgesang et al. in their

fantastic “Get Real” paper).

Examples of such short strings are:

ISO country codes (USA , DEU , GBR), 3 characters

IATA airport codes (LHR , MUC), 3 characters

Enums (MALE/FEMALE/NONBINARY , YES/NO/MAYBE), usually less than 10

characters

ISBNs (0465062881), 10 or 13 digits

We definitely want to optimize for such short strings wherever possible.

Strings aren’t usually changed all that often

Most data is only written once, but read many times. The libc++ approach of

reserving 64 bits per string just to store the capacity for the off chance that someone

wants to extend the string seems kind of wasteful when string sizes don’t change all

that often.

Also, simultaneously accessing and modifying a string concurrently can lead to data

races if we don’t use expensive locking techniques or think very carefully about our

application.

For these two reasons, we’d like to have immutable strings whenever we can get

away with it.

We usually only look at a small subset of the string

Take a look at the following to SQL query:

select * from messages where starts_with(content, 'http');

We only want to look at the first four characters of each string. It seems kind of

wasteful to always dereference a pointer just to compare the first four characters.

Note that the short string optimization of libc++ can’t save us here: If the string

isn’t short, we have to follow the pointer, even if we only care about the prefix.

https://dl.acm.org/doi/10.1145/3209950.3209952
http://www.llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch.co.uk/
http://www.llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch.co.uk/
https://cedardb.com/

Let’s look at another query:

select sum(p.amount)

from purchases p, books b

where p.ISBN = b.ISBN and b.title = 'Gödel, Escher, Bach: An Eternal Golden Braid';

Here, we need to compare all ISBNs with each other and all book titles with a string

constant. While we obviously need to compare the entire string to make sure we

have a match, most books probably won’t be called “Gödel, Escher, Bach: An Eternal

Golden Braid” (how many strings starting with “Gö” do you know, dear non-German

reader?). If a character at the beginning of the string already differs, we can rule it out

without further checking the rest of the string.

German Strings

To solve these problems, Umbra, the research predecessor of CedarDB, invented

what Andy Pavlo now affectionately (we assume ;)) calls “German-style strings”.

Let’s dig in: The Anatomy of a German String

The first big change is that each string is represented by a single 128-bit struct .

Besides the obvious advantage of saving a third of the overhead over

std::string by dropping the capacity field, it also allows us to pass strings

in function calls via two registers instead of putting them on the stack.

This struct contains one of the following two representations:

Short string representation

Here’s the memory layout for short strings:

len content

32 bit 96 bit = 12 chars

As long as the string to be stored is 12 or fewer characters, we store the content

directly in place.

Accessing the content itself, or just a prefix, is easy: Just start reading directly after

the len field, no pointer dereference needed!

Long string representation

Strings longer than 12 characters require some additional consideration:

https://x.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2024/slides/05-execution2.pdf
https://cedardb.com/

len prefix ptr

32 bit 32 bit = 4 chars 62 bit

class H e l l o _ W o r l d !,

Like C++ strings, we also store a len field and a pointer to the data itself, but with

some twists:

Length

To squeeze the whole string into 128 bits, we shorten the length field to 32 bits.

This limits the string size to 4 GiB, a tradeoff we were willing to make for our use

case.

Prefix

Right after the length we also store a four character prefix. This prefix speeds up

operations like equality/inequality comparisons, lexicographic sorting, or prefix

comparisons enormously, because we save a pointer dereference.

Pointer

The pointer points to a memory region exactly the size of the string. No buffer with

some remaining capacity here!

The obvious advantage is that we save the 64 bits for the capacity field and can

tightly pack payloads of different strings without gaps.

Since the data we’re pointing to is now immutable, we can also read it without

acquiring a read lock, since the data is guaranteed to never change as long as the

string lives.

We need to be aware of the downside as well: Appending data to a string is now a

relatively expensive operation, since a new buffer must be allocated and the payload

must be copied. However, this is not a big problem in our use case, since database

systems rarely update data in-place anyway.

Storage Class

While developing our string concept, we noticed that developers have different

requirements for the lifetime of their strings depending on where they use them.

We call these “storage classes”, which you can specify when creating a string. A

string can be persistent , transient , or temporary . To encode this storage

class, we steal two bits from the pointer.

Let’s start with the cases you might already know from your favorite programming

language:

temporary strings behave like their C++ counterparts: When constructing a

temporary string, the string constructor itself allocates some memory, stores

the payload, and correctly sets the pointer. When the string goes out of scope,

the memory is freed, RAII style.

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://cedardb.com/

persistent strings behave like string constants: They remain valid forever.

All short strings are always persistent strings, because you can just pass them

via the stack or CPU registers. Long strings can also be persistent, for example,

when referencing C++ string literals. The memory that holds the data of the

string literal is automatically allocated statically when your program starts and

is never deallocated, so referencing the string data is always valid.

But there is a third pattern: The amount of data we need to store in a database

system is often larger than RAM, and so some of it is swapped out to disk. With

conventional strings, if we loaded a page containing a string from disk, we would

have to

first load the page into memory,

and then initialize a new string which internally copies the data to the newly

initialized memory.

This process copies the string data twice. This is wasteful, since many times we only

want to access the string once. For example, consider the following query:

select * from books where starts_with(title,'Tutorial')

If we filter all books for matches, most strings won’t qualify. We’ll never need to

show them to the person issuing the query, so why copy them if we don’t need to

access them later?

We would like to have a string that is very cheap to construct and points to a region

of memory that is currently valid, but may become invalid later without the string

having control over it.

This is where transient strings come in. They point to data that is currently

valid, but may become invalid later, e.g., when we swap out the page on which the

payload is stored to disk after we’ve released the lock on the page.

Creating them has virtually no overhead: They simply point to an externally

managed memory location. No memory allocation or data copying is required during

construction! When you access a transient string, the string itself won’t know

whether the data it points to is still valid, so you as a programmer need to ensure

that every transient string you use is actually still valid. So if you need to access it

later, you need to copy it to memory that you control. If you do not need it later on,

we just accessed a string without having to do any expensive initialization!

Distinguishing between representations

How do we know if we’re dealing with a short string or a long string? It’s actually

quite simple! If its size is 12 characters or less, it is a short string. Since our strings

are immutable, there is no special case where a long string could become short or

vice versa.

https://cedardb.com/

If we just want to access the prefix, we don’t even need to check whether the string

is long or short. In either case, bits 32-63 will be the first four characters.

Conclusion

German strings have many advantages: You get great performance due to space

savings and reduced allocations and data movement. Because data is always treated

as immutable, it is also much easier to parallelize your string handling code. Thanks

to its concept of storage classes, you can tightly manage the lifetime of your strings,

trading performance for ease of use when necessary.

Of course, nothing comes without its challenges: German strings require you to

think more deeply about your application: What is the lifetime of my string? Can I

get away with a transient string, or do I have to copy it? Will my strings be

updated often? Am I okay with immutable strings?

If you’re okay with asking yourself these questions, you can benefit a lot from

German Strings, even if you’re not building a database.

Do you want to harness the power of German Strings? Don’t be shy and join our

waitlist to be among the first to get access to CedarDB!

1. Not to speak of the contents of such a character sequence. What even is a

character? Say hello to ä , ö and (╯°□°)╯︵ ┻━┻ . But that’s for another

blog post… ↩︎

2. Disclaimer: Some of the observations here are made through the lens of people

building a high performance database system. However, all of the approaches

are applicable to strings in all kinds of software. ↩︎


Working with JSON and

Graphs in CedarDB

A Deep Dive into

German Strings


Join our waitlist!

CedarDB Developers Legal Follow Us

https://cedardb.com/blog/working_with_json_and_graphs/
https://cedardb.com/blog/working_with_json_and_graphs/
https://cedardb.com/blog/working_with_json_and_graphs/
https://cedardb.com/blog/working_with_json_and_graphs/
https://cedardb.com/blog/working_with_json_and_graphs/
https://cedardb.com/blog/working_with_json_and_graphs/
https://cedardb.com/blog/working_with_json_and_graphs/
https://cedardb.com/blog/working_with_json_and_graphs/
https://cedardb.com/blog/strings_deep_dive/
https://cedardb.com/blog/strings_deep_dive/
https://cedardb.com/blog/strings_deep_dive/
https://cedardb.com/blog/strings_deep_dive/
https://cedardb.com/blog/strings_deep_dive/
https://cedardb.com/blog/strings_deep_dive/
https://cedardb.com/blog/strings_deep_dive/
https://cedardb.com/blog/strings_deep_dive/
https://linkedin.com/company/cedardb
https://github.com/cedardb
https://twitter.com/cedar_db
https://cedardb.com/

Supported by

s Projekt LunaBase wird im Rahmen des EXIST-Programms durch das Bundesministerium für Wirtschaft und Klimaschutz und den Europäischen Sozialfonds geförd

Get to know us

The CedarDB

Blog

Newsletter

Archive

Documentation Imprint

Privacy Policy

  

https://cedardb.com/about/
https://cedardb.com/blog/
https://cedardb.com/blog/
https://cedardb.com/newsletter_archive/
https://cedardb.com/newsletter_archive/
https://cedardb.com/docs/
https://cedardb.com/imprint/
https://cedardb.com/privacypolicy/
https://linkedin.com/company/cedardb
https://github.com/cedardb
https://twitter.com/cedar_db

