
ROBERT HEATON
Software Engineer /
One-track lover / Down a two-way lane

Posts About Twitter Subscribe

PySkyWiFi: completely free,
unbelievably stupid wi-fi on long-haul
flights
09 Jul 2024

The plane reached 10,000ft. I took out my laptop, planning to peruse the
internet and maybe do a little work if I got really desperate.

I connected to the in-flight wi-fi and opened my browser. The network login
page demanded credit card details. I fumbled for my card, which I eventually
discovered had hidden itself inside my passport. As I searched I noticed that
the login page was encouraging me to sign in to my airmiles account, free of
charge, even though I hadn’t paid for anything yet. A hole in the firewall, I
thought. It’s a long way from London to San Francisco so I decided to peer
through it.

I logged in to my JetStreamers Diamond Altitude account and started
clicking. I went to my profile page, where I saw an edit button. It looked like a
normal button: drop shadow, rounded corners, nothing special. I was
supposed to use it to update my name, address, and so on.

But suddenly I realised that this was no ordinary button. This clickable rascal
would allow me to access the entire internet through my airmiles account.
This would be slow. It would be unbelievably stupid. But it would work.

Several co-workers were asking me to review their PRs because my
feedback was “two weeks late” and “blocking a critical deployment.” But my

https://robertheaton.com/
https://robertheaton.com/
https://robertheaton.com/about
https://twitter.com/RobJHeaton
https://robertheaton.com/newsletter
https://robertheaton.com/pyskywifi/
https://robertheaton.com/pyskywifi/
https://robertheaton.com/pyskywifi/

ideas are important too so I put on my headphones and smashed on some
focus tunes. I’d forgotten to charge my headphones so Limp Bizkit started
playing out of my laptop speakers. Fortunately no one else on the plane
seemed to mind so we all rocked out together.

Before I could access the entire internet through my airmiles account I’d
need to write a few prototypes. At first I thought that I’d write them using Go,
but then I realised that if I used Python then I could call the final tool
PySkyWiFi . Obviously I did that instead.

Prototype 1: Instant Messaging

Here’s the basic idea: suppose that I logged into my airmiles account and
updated my name. If you were also logged in to my account then you could
read my new name, from the ground. You could update it again, and I could
read your new value. If we kept doing this then the name field of my airmiles
account could serve as a tunnel through the airplane’s wi-fi firewall to the
real world.

This tunnel could support a simple instant messaging protocol. I could
update my name to “ Hello how are you .” You could read my message and
then send me a reply by updating my name again to “ Im fine how are

you .” I could read that, and we could have a stilted conversation. This might
not sound like much, but it would be the first step on the road to full internet
access.

I paid for the internet on my old laptop. I hadn’t finished migrating my data off
this computer, so it still had to come everywhere with me. I messaged my
wife to ask her to help me with my experiments. no, what are you talking

about, i'm busy she replied, lovingly.

So instead I took out my new laptop, which still had no internet access. I
created a test airmiles account and logged into it on both computers. I found
that I could indeed chat with myself by updating the name field in the UI.

https://github.com/robert/PySkyWiFi

Computer2Airmiles Account
Name FieldComputer1

Computer2Airmiles Account
Name FieldComputer1

TYPE: Hello how are you

READ: Hello how are you

TYPE: Im fine how are you

READ: Im fine how are you

This was a lousy user experience though. So I wrote a command line tool to
automate it. My tool asked the user for a message, and then behind the
scenes it logged into my airmiles account via the website, using my
credentials. The tool updated the name field of my test account with the
user’s message. It then polled the name field every few seconds to see if my
account’s name had changed again, which would indicate that the other
person had sent a message back. Once the tool detected a new value it
printed that value and asked the user for their next reply, and so on.

Airmiles Account
Name Field

Airmiles Account
Name Field

Me You

(poll for new data)

(no new data)

WRITE: Hello how are you

(poll for new data)

READ: Hello how are you

(poll for new data)

(no new data)

WRITE: Im fine how are you

(poll for new data)

READ: Im fine how are you

Me You

Using this tool I could chat with someone on the ground, via my terminal. I
wouldn’t have to pay for wifi, and neither of us would have to know or care
that the messages were being sent via my SkyVenture Premium Gold
Rewards account.

I still needed to find someone who would chat with me. But this was a good
start!

NB: at this point I didn’t want to send any more automated data
through my airmiles account in case that got me in trouble somehow.
Nothing I was doing could possibly cause any damage, but some
companies get jumpy about this kind of thing.

I therefore proved to myself that PySkyWiFi would work on my airmiles
accounts too by updating my name ten or so times in quick
succession. They all succeeded, which suggested to me that my

airmiles account probably wasn’t rate-limiting the speed or number of
requests I could send to it.

I then wrote the rest of my code by sending my data through friendly
services like GitHub Gists and local files on my computer, using the
same principles as if I were sending it through an airmiles account. If
PySkyWiFi worked through GitHub then it would work through my Star
Power UltimateBlastOff account too. This had the secondary
advantage of being much faster and easier for iteration too.

I’m going to keep talking about sending data through an airmiles
account, because that’s the point I’m trying to make.

Prototype 2: Live headlines, stock prices, and football scores

The tunnel I’d constructed through my airmiles account would be useful for
more than IMing. For my next prototype I wrote a program that would run on
a computer back at my house or in the cloud, and would automatically send
information from the real world up to me on the plane, through my airmiles
account. I could deploy it before I left for my next flight and have it send me
the latest stock prices or football scores while I was in the sky.

To do this I wrote a daemon that would run on a computer that was on the
ground and connected to the internet. The daemon constantly polled the
name field in my airmiles account, looking for structured messages that I
sent to it from the plane (such as STOCKPRICE: APPL or SCORE: MANUNITED).
When the daemon saw a new request it parsed it, retrieved the requested
information using the relevant API, and sent it back to me via my airmiles
account. It worked perfectly.

Now I could use my first prototype to send IMs through my airmiles account,
and I could use my second prototype tio follow the markets and the sports.

It was time to squeeze the entire internet through my airmiles account.

The real thing: PySkyWiFi

During the rest of the flight I wrote PySkyWiFi. PySkyWiFi is a highly
simplified version of the TCP/IP protocol that squeezes whole HTTP
requests through an airmiles account, out of the plane, and down to a
computer connected to the internet on the ground. A daemon running on this
ground computer makes the HTTP requests for me, and then finally
squeezes the completed HTTP responses back through my airmiles
account, up to me on my plane.

This meant that on my next flight I could technically have full access to the
internet, via my airmiles account. Depending on network conditions on the
plane I might be able to hit speeds of several bytes per second.

DISCLAIMER: you obviously shouldn’t actually do any of this

Here’s how it works (and here’s the source code).

How PySkyWiFi works

PySkyWiFi has two components:

The sky proxy - a proxy that runs on your laptop, on a plane
The ground daemon - a daemon that runs on a computer connected to
the internet, at your home on the ground or in the cloud

Here’s a simplified diagram:

https://github.com/robert/PySkyWiFi

example.comGround DaemonAirmiles AccountSky Proxy

example.comGround DaemonAirmiles AccountSky Proxy

Me

HTTP request

HTTP request

HTTP request

HTTP request

HTTP response

HTTP response

HTTP response

HTTP response

Me

Setup starts before you leave your house. First you start up the ground
daemon. Then you get a taxi to the airport, get on the plane, and connect to
the plane’s wi-fi network. You boot up the sky proxy on your laptop. Your
PySkyWiFi relay is now ready to go.

You use a tool like curl to make an HTTP request to the sky proxy that
you’ve started on your laptop. You address your request to the proxy (eg.
localhost:1234/) and you put the actual URL that you want to query inside

a custom HTTP header called X-PySkyWiFi . For example:

curl localhost:1234 -H "X-PySkyWiFi: example.com"`

The X-PySkyWiFi header will be stripped by the ground daemon and used
to route your request to your target website. Everything else about the
request (including the body and other headers) will be forwarded exactly as-
is.

Once you make your request it will hang for several minutes. If by some
miracle nothing breaks then you’ll eventually get back an HTTP response,
exactly as if you’d sent the request over the normal internet like a normal
person. The only difference is that it didn’t cost you anything. You will now

almost certainly pay for wi-fi, because your curiosity has been satisfied and
your time on this earth is very short.

Step-by-step

Here’s what happens behind the scenes:

example.comGround DaemonAirmiles Account 2
Name Field

Airmiles Account 1
Name FieldSky Proxy

example.comGround DaemonAirmiles Account 2
Name Field

Airmiles Account 1
Name FieldSky Proxy

Repeat until the whole HTTP request has been transferred

Repeat until the whole HTTP response has been transferred

Me

curl localhost:1234 \n -H "X-PySkYWiFi: example.com"

Write request chunk 1

(poll for new data)

Read request chunk 1

Ack request chunk 1

(poll for new data)

Read ack for request chunk 1

Write request chunk 2

(poll for new data)

Read request chunk 2

GET / HTTP/1.1
Host: example.com

<etc>

HTTP/1.1 200 OK
Content-Type: text/html

<etc>

Write response chunk 1

(poll for new data)

Read response chunk 1

Ack request chunk 1

(poll for new data)

Read ack for request chunk 1

Write response chunk 2

(poll for new data)

Read response chunk 2

HTTP/1.1 200 OK
Content-Type: text/html

<etc>

Me

In order:

1. The sky proxy receives the HTTP request from your curl call. It splits
the request into chunks, because the entire request is too large to fit into
you airmiles account in one go

2. The sky proxy writes each chunk one-by-one to the name field in your
airmiles account.

3. The ground daemon polls your airmiles account. When it detects that
the name field has changed to a new chunk, it reads that chunk and
sends an acknowledgement to the sender so that the sender knows it’s

safe to send the next chunk. The receiver sticks the chunks back
together and rebuilds the original HTTP request

4. Once the ground daemon has received and rebuilt the full HTTP
request, it sends the request out over the internet.

5. The ground daemon receives an HTTP response.
6. The ground daemon sends the HTTP response up to the sky proxy

using the same process as before, in reverse. This time the ground
daemon splits the HTTP response up into chunks and writes each
chunk one-by-one to the name field in your airmiles account (it actually
writes these response chunks using a second airmiles account to make
the protocol simpler)

7. The sky proxy polls the second airmiles account. It reads each chunk
and sticks them back together to rebuild the HTTP response

8. The sky proxy returns the HTTP response to the original call to curl .
As far as curl is concerned this is a perfectly normal HTTP response,
just a little slow. curl has no idea about the silliness that just
transpired

The sky proxy and the ground daemon are relatively simple: they send HTTP
requests and parse HTTP responses. The magic is in how they squeeze
these requests and responses through an airmiles account. Let’s look closer.

Squeezing HTTP requests through an airmiles account

PySkyWiFi’s communication logic is split into two layers: a transport layer,
and a network layer. The transport layer’s job is to decide what data clients
should send to each other. It dictates how senders should split up long
messages into manageable chunks, as well as how senders and receivers
should signal information like “I am ready to receive another chunk.” The
PySkyWiFi transport layer is somewhat similar to the TCP protocol that
powers much of the internet, if you squint very hard and don’t know much
about TCP.

By contrast, the network layer’s job is to actually send data between clients,
once the transport protocol has decided what that data should be. It’s

vaguely similar to the IP protocol, if you squint even harder and know even
less what you’re talking about.

This division of responsibility between layers is useful because the transport
layer doesn’t have to care about how the network layer sends its data, and
the network layer doesn’t care what the data it sends means or where it
came from. The transport layer just hands the network layer some data, and
the network layer sends it however it likes.

This separation makes it easy to add support for new airmiles platforms,
because all we have to do is implement a new network layer that reads and
writes to the new type of airmiles account. This separation also allows us to
write test versions of the network protocol that write and read from local files
instead of airmiles accounts. In each case the network layer changes, but
the transport layer stays exactly the same. Here’s how they work.

The transport layer

A PySkyWiFi transport connection between two clients consists of two
“pipes” (or “airmiles accounts”). Each client has a “SEND” pipe that it can
write data to, and a “RECV” pipe that it can read from. Clients write to their
SEND pipe by writing data to it, and they read from their RECV pipe by
constantly polling it and seeing if anything has changed.

Client1 Client2

From the transport layer’s point of view, a pipe is just something that it can
write and read data from. Beyond that the transport layer doesn’t care how
its pipes work.

At any given moment a PSWF (PySkYWiFi) client can only either send or
receive data, but not both. A client in send mode will not see data sent by the
other client, and a client in receive mode should never send data because
the other client won’t see it. This is unlike TCP, where clients can send or
receive data at ay time.

When squeezing HTTP requests and responses through an airmiles
account, the sky proxy sends the first message and the ground daemon
receives it. Once the sky proxy has finished sending its HTTP request it
switches to receive mode and the ground daemon switches to send. The
ground daemon makes the HTTP request and sends back the response, at
which point the two switch roles again so that the sky proxy can send
another HTTP request.

How are long messages sent through such a small pipe?

PSWF uses small pipes (such as an airmiles name field) that can’t fit much
data in them at once. This means that it takes some work and care to
squeeze long messages (like HTTP requests) through them.

To send a long message, the sender first splits up their message into chunks
that will fit into their SEND pipe. They then send each chunk down the pipe
one at a time.

To begin a message, a sender starts by sending its first chunk of message
data inside a DATA segment:

A DATA segment consists of:

The letter D

The sequence number of the chunk (a number that uniquely
identifies the chunk, padded to 6 digits)
The actual chunk of data.

For example, a data segment in the middle of a message might read:
D000451adline": "Mudslide in Wigan causes m

Once the sender has sent a DATA segment, it pauses. It wants to send its
next DATA segment, but it can’t overwrite the airmiles account name field
until it knows that the receiver has received and processed the previous one.

The receiver tells the sender that it’s safe for to send a new DATA segment
by acknowledging every segment that it reads. The receiver does this by
writing an ACK segment to its own SEND pipe:

An ACK segment consists of:

The letter A

The sequence number of the segment that is being acknowledged
(padded to 6 digits)

For example: A000451

The sender is constantly polling its own RCV pipe to check for changes, and
so it reads this new ACK segment promptly. Once the sender reads the
ACK , it knows that the receiver has received the segment corresponding to

the ACK ’s sequence number. For example, if a sender receives an ACK

segment with sequence number 000451 , the sender knows that it’s safe to
send the next DATA segment with sequence number 000452 . The sender
therefore pulls the next chunk from its message and constructs a new DATA

segment using this chunk and sequence number. The sender writes the new
segment to its SEND pipe, and then pauses waits for another ACK .

This loop continues until the sender has sent all the data in its message. To
tell the recipient that it’s finished, the sender sends an END segment.

An END segment is just the letter E .

When a receiver sees an END segment it knows that the sender’s message
is over. The sender and the receiver swap roles. The old sender starts
polling its RECV pipe for DATA segments, and the old receiver starts
chunking up its response message and sending it through its pipe, exactly
as before.

None of this transport logic cares about the details of the network layer
through which the segments are sent. The transport layer just needs the

network layer to provide two pipes that it can read and write to. The network
layer can pipe this data around via local files, a Discord profile, or an airmiles
account. This genericness is what allows PySkyWiFi to work with any
airline’s airmiles account, so long as the airline allows you to login to it from
the plane without paying.

Here’s how PSWF uses transport protocol segments to exchange long
messages:

robertheaton.comGround DaemonAirmiles Account 2
Name Field

Airmiles Account 1
Name FieldSky Proxy

robertheaton.comGround DaemonAirmiles Account 2
Name Field

Airmiles Account 1
Name FieldSky Proxy

Repeat until the whole HTTP request has been transferred

Repeat until the whole HTTP response has been transferred

Me

curl localhost:1234 \n -H "X-PySkYWiFi: robertheaton.com"

Write DATA segment
sequence number=000000:

contents=`GET / HTTP/1.1 X-PySkyW`

(poll for new data)

Read DATA segment
sequence number=000000:

contents=`GET / HTTP/1.1 X-PySkyW`

Write ACK segment
sequence number=000000

(poll for new data)

Read ACK segment
sequence number=000000

Write DATA segment
sequence number=000001

contents=`iFi: www.robertheaton.co`

(poll for new data)

Read DATA segment
sequence number=000001

contents=`iFi: www.robertheaton.co`

GET / HTTP/1.1
Host: robertheaton.com

<etc>

HTTP/1.1 200 OK
Content-Type: text/html, charset=UTF-8

<etc>

Write DATA segment
sequence number=000000

contents=HTTP/1.1 200 OK\nCont

(poll for new data)

Read DATA segment
sequence number=000000

contents=HTTP/1.1 200 OK\nCont

Write ACK segment
sequence number=000000

(poll for new data)

Read ACK segment
sequence number=000000

HTTP/1.1 200 OK
Content-Type: text/html, charset=UTF-8

<etc>

Me

The transport layer decides what data the clients should send each other,
but it doesn’t say anything about how they should send it. That’s where the
network protocol comes in.

The network layer

The network layer’s job is to send data between clients. It doesn’t care about
where the data came from or what it means; it just receives some data from

the transport layer and sends it to the other client (typically via an airmiles
account).

This means that the network layer is quite simple. It also means that adding
a new network layer for a new airmiles platform is straightforward. You use
the new platform to implement a few operations and a few properties (see
below), and then the transport layer can automatically to use your new
airmiles platform with no extra work.

A network layer consists of two operations:

send(msg: str) - write msg to storage. For an airmiles-based
implementation, this writes the value of msg to the name field in the
user’s airmiles account
recv() -> str - read the message from storage. For an airmiles-

based implementation, this reads the value of the name field from the
user’s airmiles account.

A network layer implementation must also define two properties:

sleep_for - the number of seconds that the transport layer should
sleep for in between polling for new segments from a RECV pipe.
sleep_for can be very low for test implementations like files, but it

should be at least several seconds for an implementation like an
airmiles account. This is in order to avoid hammering remote server with
too many requests.
segment_data_size - the number of characters that the transport layer

should send in a single segment. Should be equal to the maximum size
of the airmiles account field being used to transfer segments (often
around 20 characters).

A network layer implementation can also optionally provide two more
operations:

connect_send() - a hook called by the sender when a SEND pipe is
initialised. In an airmiles-based implementation this allows the client to
login to the platform using a username and password. This gives the

client a cookie that it can use to authenticate future send and recv

calls.
connect_recv() - a hook called by the receiver when a RECV pipe is

initialised

If you fill in all these methods, you’ll be able to use PySkyWiFi on a new
airline. But again, don’t.

Tips and tricks

When writing a network layer that uses a new airmiles provider, there are a
couple of tricks that can make your implementation faster and more reliable.

1. Encode messages to make sure the airmiles account accepts them

Airmiles HTML forms usually don’t let users include non-alphabetic
characters in their name. Stephen will probably be allowed, but GET /data?

id=5 will probably be rejected.

To work around this, the network layer should encode segments using
base26 before writing them to an airmiles account. base26 is a way of
representing a string using only the letters A to Z . In order to convert a
byte string to base26, you convert the bytes to a single large number, then
you represent that number using a counting system with base 26 (hence the
name) where the digits are the letters A to Z .

def b26_encode(input_string: str) -> int:

 # Convert input string to a base-256 integer

 base256_int = 0

 for char in input_string:

 base256_int = base256_int * 256 + ord(char)

 # Convert base-256 integer to base26 string

 if base256_int == 0:

 return 'A' # Special case for empty input or input that equals zero

 base26_str = ""

 while base256_int > 0:

 base26_str = chr(base256_int % 26 + 65) + base26_str

 base256_int //= 26

 return base26_str

b26_encode("Hello world")

=> 'CZEZINADXFFTZEIDPKM'

The transport layer never needs to know about this encoding. The network
layer receives some bytes, encodes them using base26, and writes this
encoded string of A to Z to the airmiles account. When the network layer
reads the base26 value back out of the airmiles account, it decodes the
encoded string back into a number and then back into bytes, and then
returns those bytes to the transport layer.

Encoding a string using base 26 makes it significantly longer, just like how it
takes many more digits to represent a number using binary than decimal.
This reduces the bandwidth of our protocol. We could increase our
bandwidth by using base52 (using both upper- and lower-case letters)
instead of base26, which would shorten it somewhat. This is left as an
enhancement for version 2.

2. Increase bandwidth by using more account fields

Another way to increase our PSWF bandwidth is to increase the segment
size that a network layer can handle. If we double the size of our segments,
we double the bandwidth of our protocol.

Fields in airmiles accounts usually have length limits. For example, you
might not be allowed to set a name longer than 20 characters. However, we
can maximise our bandwidth by:

1. Using the full length of the field
2. Spreading out a segment across multiple fields

Suppose we have control over 5 fields that can each store 20 characters.
Instead of using one field to transmit segments of 20 characters, we can split
a 100 character segment into 5 chunks of 20 and update them all at once in
a single request. The receiver can then read all 5 fields, again in a single
request, and stitch them back together to reconstruct the full segment.

Further enhancements

HTTP CONNECT

It would be better if PySkyWiFi used HTTP CONNECT requests to set up the
tunnel from the sky proxy to the target site, instead of manually tossing
around HTTP requests. CONNECT requests are how most HTTP proxies
work, and using them would allow PySkyWiFi to act as the system-level
proxy and so handle requests from a web browser. It would also mean that
PySkyWiFi would negotiate TLS connections with the target website directly,
so its traffic would be encrypted as it passed through the airmiles account.

On the other hand, using CONNECT would also be a lot more work and I’ve
already taken this joke way too far.

In conclusion

When I was done with all of this I used PySkyWiFi to load the homepage of
my blog using curl , tunneling the data via a GitHub Gist. Several minutes
later I got a response back. I scrolled around the HTML and reflected that
this had been both the most and least productive flight of my life.

(PySkyWiFi source code here)

Get new essays sent to you
Subscribe to my new work on programming, security, and a few other topics. Published a few times a
month.

Your email address Subscribe

Follow me on Twitter ➜ RSS ➜

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/CONNECT
https://github.com/robert/PySkyWiFi
https://twitter.com/robjheaton
https://robertheaton.com/feed.xml

MORE ON PROGRAMMING

Hello Deep Learning

Gamebert: a Game Boy emulator built by Robert

Gameboy Doctor: debug and fix your gameboy emulator

What is a self-hosting compiler?

Migrating bajillions of database records at Stripe

Code review without your glasses

Jaccard Similarity and MinHash for winners

Is Python pass-by-reference or pass-by-value?

Home / Archive / RSS / Twitter / Office hours / Tipoffs / SoundCloud

https://robertheaton.com/hello-deep-learning/
https://robertheaton.com/gamebert/
https://robertheaton.com/gameboy-doctor/
https://robertheaton.com/2017/10/24/what-is-a-self-hosting-compiler/
https://robertheaton.com/2015/08/31/migrating-bajillions-of-database-records-at-stripe/
https://robertheaton.com/2014/06/20/code-review-without-your-eyes/
https://robertheaton.com/2014/05/02/jaccard-similarity-and-minhash-for-winners/
https://robertheaton.com/2014/02/09/pythons-pass-by-object-reference-as-explained-by-philip-k-dick/
https://robertheaton.com/
https://robertheaton.com/archive
https://robertheaton.com/feed.xml
https://twitter.com/robjheaton
https://robertheaton.com/office-hours
https://robertheaton.com/tipoffs
https://soundcloud.com/rob24242/

