
TkDodo's blog Search

Blog Tags Sponsors Rss Twitter Github

Automatic Query Invalidation after Mutations
25.05.2024 — ReactJs, React Query, TypeScript, JavaScript — 6 min read

https://tkdodo.eu/blog
https://tkdodo.eu/blog/all
https://tkdodo.eu/blog/tags
https://tkdodo.eu/blog/sponsors
https://tkdodo.eu/blog/rss.xml
https://twitter.com/tkdodo
https://github.com/tkdodo
https://tkdodo.eu/blog/tags/react-js
https://tkdodo.eu/blog/tags/react-query
https://tkdodo.eu/blog/tags/type-script
https://tkdodo.eu/blog/tags/java-script

Photo by Rock'n Roll Monkey

#1: Practical React Query
#2: React Query Data Transformations
#3: React Query Render Optimizations
#4: Status Checks in React Query
#5: Testing React Query
#6: React Query and TypeScript
#7: Using WebSockets with React Query
#8: Effective React Query Keys
#8a: Leveraging the Query Function Context
#9: Placeholder and Initial Data in React Query
#10: React Query as a State Manager
#11: React Query Error Handling
#12: Mastering Mutations in React Query
#13: Offline React Query
#14: React Query and Forms
#15: React Query FAQs
#16: React Query meets React Router
#17: Seeding the Query Cache
#18: Inside React Query
#19: Type-safe React Query
#20: You Might Not Need React Query
#21: Thinking in React Query
#22: React Query and React Context
#23: Why You Want React Query
#24: The Query Options API
#25: Automatic Query Invalidation after Mutations

Add translation

Queries and Mutations are two sides of the same coin. A Query defines an asynchronous resource for
reading, which often comes from data fetching. A Mutation on the other hand is an action to update
such a resource.

When a Mutation finishes, it very likely affects Queries. For example, updating an issue will likely affect
the list of issues . So it might be a bit surprising that React Query does not link Mutations to Queries at
all.

https://unsplash.com/@rocknrollmonkey
https://tkdodo.eu/blog/practical-react-query
https://tkdodo.eu/blog/react-query-data-transformations
https://tkdodo.eu/blog/react-query-render-optimizations
https://tkdodo.eu/blog/status-checks-in-react-query
https://tkdodo.eu/blog/testing-react-query
https://tkdodo.eu/blog/react-query-and-type-script
https://tkdodo.eu/blog/using-web-sockets-with-react-query
https://tkdodo.eu/blog/effective-react-query-keys
https://tkdodo.eu/blog/leveraging-the-query-function-context
https://tkdodo.eu/blog/placeholder-and-initial-data-in-react-query
https://tkdodo.eu/blog/react-query-as-a-state-manager
https://tkdodo.eu/blog/react-query-error-handling
https://tkdodo.eu/blog/mastering-mutations-in-react-query
https://tkdodo.eu/blog/offline-react-query
https://tkdodo.eu/blog/react-query-and-forms
https://tkdodo.eu/blog/react-query-fa-qs
https://tkdodo.eu/blog/react-query-meets-react-router
https://tkdodo.eu/blog/seeding-the-query-cache
https://tkdodo.eu/blog/inside-react-query
https://tkdodo.eu/blog/type-safe-react-query
https://tkdodo.eu/blog/you-might-not-need-react-query
https://tkdodo.eu/blog/thinking-in-react-query
https://tkdodo.eu/blog/react-query-and-react-context
https://tkdodo.eu/blog/why-you-want-react-query
https://tkdodo.eu/blog/the-query-options-api
https://www.sxungchxn.dev/blog/189f225c-7bc4-49f2-b08d-f5b11e4fd48e
https://github.com/TkDodo/blog/blob/main/CONTRIBUTING.md#translations

The reason behind this is quite simple: React Query is totally un-opinionated about how you manage
your resources, and not everyone likes re-fetching after a Mutation. There are cases where the Mutation
returns updated data, which we'd want to then put into the cache manually to avoid another network
roundtrip.

There are also many different ways of how you'd want to do invalidation:

Do you invalidate in onSuccess or onSettled ?
The former will only be invoked when the Mutation succeeded, while the latter will also run in case
of errors.
Do you want to await invalidations?
Awaiting an invalidation will result in the Mutation staying in pending state until the refetch has
finished. This can be a good thing, for example if you'd want your form to stay disabled until then,
but it might also be not what you want in case you want to navigate from a detail screen to an
overview page as soon as possible.

Since there isn't a one-size-fits-all solution, React Query provides nothing out of the box. However, it's
not at all difficult to implement automatic invalidation the way you want them to behave in React Query
thanks to the global cache callbacks.

Mutations have callbacks - onSuccess , onError and onSettled , which you have to define on each
separate useMutation . Additionally, the same callbacks exist on the MutationCache . Since there is
only one MutationCache for our application, those callbacks are "global" - they are invoked for every
Mutation.

It's not quite obvious how to create a MutationCache with callbacks, because in most examples, the
MutationCache is implicitly created for us when we create the QueryClient . However, we can also
create the cache itself manually and provide callbacks to it:

create-MutationCache

The Global Cache Callbacks

import { QueryClient, MutationCache } from '@tanstack/react-query'

const queryClient = new QueryClient({

 mutationCache: new MutationCache({

 onSuccess,

 onError,

 onSettled,

}),

})

TS

1

2

3

4

5

6

7

8

9

Copy

https://tanstack.com/query/v5/docs/framework/react/guides/updates-from-mutation-responses
https://tkdodo.eu/blog/mastering-mutations-in-react-query#awaited-promises
https://tanstack.com/query/v5/docs/reference/MutationCache#global-callbacks

The callbacks get the same arguments as the ones on useMutation , except that they will also get the
Mutation instance as last parameter. And just like the usual callbacks, returned Promises will be awaited.

So how can the global callback help us with automatic invalidation? Well - we can just call
queryClient.invalidateQueries inside the global callback:

automatic-invalidation

With just 5 lines of code, we get a similar behaviour to what frameworks like Remix (sorry, React-Router)
are doing as well: Invalidate everything after every submission. Shout out to Alex for showing me this path:

Maybe, maybe not. It depends. Again, that's why it isn't built in, because there are too many different
ways to go about it. One thing we have to clarify here is that an invalidation doesn't always equate to a
refetch.

Invalidation merely refetches all active Queries that it matches, and marks the rest as stale , so that
they get refetched when they are used the next time.

This is usually a good trade-off. Consider having an Issue List with filters. Since each filter should be part
of the QueryKey, we'll get multiple Queries in the cache. However, I'm only ever viewing one of those
Queries at the same time. Refetching them all would lead to lots of unnecessary requests, and there's no
guarantee that I will ever go back to a list with one of those filters.

const queryClient = new QueryClient({

 mutationCache: new MutationCache({

onSuccess: () => {

 queryClient.invalidateQueries()

},

}),

})

TS

1

2

3

4

5

6

7

Alex / KATT 🐱
@alexdotjs

I just invalidate everything on every mutation

https://trpc.io/docs/client/re...

- Jan 8, 2024

But isn't that excessive ?

Copy

https://twitter.com/alexdotjs/status/1744467890277921095

So invalidation only refetches what I currently see on the screen (active Queries) to get an up-to-date
view, and everything else will be refetched if we ever need them again.

Okay, hold on. What about fine-grained revalidation? Why would we invalidate the profile data when
we add an issue to our list? That barely makes sense ...

Again, a trade-off. The code is as simple as it gets, and I would prefer fetching some data more often
than strictly necessary over missing a refetch. Fine-grained revalidation is nice if you know exactly what
you need to refetch, and that you'll never need to extend those matches.

In the past, we've often done fine-grained revalidation, just to find out that we'd need to add another
resource into the mix later which doesn't fit the used invalidation pattern. At that point, we had to go
through all mutation callbacks to see if that resource needed to be refetched as well. That's cumbersome
and error-prone.

On top of that, we often use a medium-sized staleTime of ~2 minutes for most our Queries. So the
impact of invalidating after an unrelated user interaction is negligible.

Of course, you can make your logic more involved to make your revalidation smarter. Here are some
techniques I've used in the past:

MutationKey and QueryKey have nothing in common, and the one for Mutations is also optional. You can
tie them together if you want by using the MutationKey to specify which Queries should be invalidated:

mutationKey

Then, you can give your Mutation a mutationKey: ['issues'] to invalidate everything issue related
only. And if you have a Mutation without a key, it would still invalidate everything. Nice.

Tying invalidation to specific Queries

Tie it to the mutationKey

const queryClient = new QueryClient({

 mutationCache: new MutationCache({

onSuccess: (_data, _variables, _context, mutation) => {

 queryClient.invalidateQueries({

 queryKey: mutation.options.mutationKey,

})

},

}),

})

TS

1

2

3

4

5

6

7

8

9

Copy

I often mark Queries as "static" by giving them staleTime:Infinity . If we don't want those Queries to
be invalidated, we can look at the staleTime setting of a Query and exclude those via the predicate
filter:

nonStaticQueries

Finding out the actual staleTime for a Query is not that trivial, because staleTime is an observer level
property. But it's doable, and we can also combine the predicate filter with other filters like queryKey .
Neat.

We can use meta to store arbitrary, static information about a Mutation. As an example, we can add an
invalidates field to give "tags" to our mutation. These tags can then be used to fuzzily match Queries
we'd want to invalidate:

Exclude Queries depending on staleTime

const queryClient = new QueryClient({

 mutationCache: new MutationCache({

onSuccess: (_data, _variables, _context, mutation) => {

const nonStaticQueries = (query: Query) => {

const defaultStaleTime =

 queryClient.getQueryDefaults(query.queryKey).staleTime ?? 0

const staleTimes = query.observers

.map((observer) => observer.options.staleTime)

.filter((staleTime) => staleTime !== undefined)

const staleTime =

 query.getObserversCount() > 0

? Math.min(...staleTimes)

: defaultStaleTime

return staleTime !== Number.POSITIVE_INFINITY

}

 queryClient.invalidateQueries({

 queryKey: mutation.options.mutationKey,

 predicate: nonStaticQueries,

})

},

}),

})

TS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Use the meta option

Copy

the-meta-option

Here, we still use the predicate function to get a single call to queryClient.invalidateQueries . But
inside of it, we do fuzzy matching with matchQuery - a function you can import from React Query. It's
the same function that gets used internally when passing a single queryKey as a filter, but now, we can
do it with multiple keys.

This pattern is probably only slightly better than just having onSuccess callbacks on useMutation itself,
but at least we don't need to bring in the QueryClient with useQueryClient every time. Also, if we
combine this with invalidating everything per default, this will give us a good way to opt-out of that
behaviour.

The meta option in TypeScript

Generally, meta is typed as Record<string, unknown> , but we can tweak this with module
augmentation:

import { matchQuery } from '@tanstack/react-query'

const queryClient = new QueryClient({

mutationCache: new MutationCache({

onSuccess: (_data, _variables, _context, mutation) => {

 queryClient.invalidateQueries({

predicate: (query) =>

// invalidate all matching tags at once

// or everything if no meta is provided

 mutation.meta?.invalidates?.some((queryKey) =>

matchQuery({ queryKey }, query)

) ?? true,

})

},

}),

})

// usage:

useMutation({

mutationFn: updateLabel,

meta: {

invalidates: [['issues'], ['labels']],

},

})

JS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

TS

Copy

Copy

You can read more about typing meta in the docs.

In all the examples shown above, we are never awaiting an invalidation, and that's fine if you want your
mutations to finish as fast as possible. One specific situation that I have come across a lot is wanting to
invalidate everything, but have the Mutation stay pending until one important refetch is done. For example,
I might want label specific Queries to be awaited after updating a label, but I wouldn't want to wait until
everything is done refetching.

We can build this into our meta solution by extending how that structure is defined, for example:

meta-awaits

Or, we can take advantage of the fact that callbacks on the MutationCache run before callbacks on
useMutation . If we have our global callback set-up to invalidate everything, we can still add a local
callback that just awaits what we want it to:

local-onSuccess

declare module '@tanstack/react-query' {

interface Register {

 mutationMeta: {

 invalidates?: Array<QueryKey>

}

}

}

1

2

3

4

5

6

7

To Await or not to Await

useMutation({

 mutationFn: updateLabel,

 meta: {

 invalidates: 'all',

 awaits: ['labels'],

},

})

TS

1

2

3

4

5

6

7

const queryClient = new QueryClient({

 mutationCache: new MutationCache({

onSuccess: () => {

 queryClient.invalidateQueries()

},

TS

1

2

3

4

5

Copy

Copy

https://tanstack.com/query/v5/docs/framework/react/typescript#typing-meta

Here's what's happening:

First, the global callback runs and invalidates all Queries, but we since we neither await nor
return anything, this is a "fire-and-forget" invalidation.
Then, our local callback will run immediately after that, where we will create a Promise for invalidating
the ['labels'] only. Since we are returning that Promise, the Mutation will stay pending until
['labels'] are refetched.

cancelRefetch

Note that we are passing cancelRefetch: false to the manual invalidateQueries call. This
flag defaults to true , because we'd usually want imperative refetch calls to take precedence and
cancel currently running ones to guarantee up-to-date data afterwards.

But here, we want the opposite: Since our global callback has already invalidated everything,
including the Query we want to await , we just use invalidateQueries to "pick up" the already in-
flight Promise and return it.

If we wouldn't do that, we'd see another request for our ['labels'] Query.

I think this shows that it's not a lot of code to add an abstraction that you're comfortable with for
automatic invalidation. Just keep in mind that every abstraction has a cost: It's a new API that needs to
be learned, understood and applied properly.

I hope by showing all these possibilities, it's a bit clearer why we have nothing built into React Query.
Finding an API that is flexible enough to cover all cases without being bloated is not an easy thing to do.
For this, I prefer to give you the tools to build this in user-land.

}),

})

useMutation({

 mutationFn: updateLabel,

onSuccess: () => {

// returning the Promise to await it

return queryClient.invalidateQueries(

{ queryKey: ['labels'] },

{ cancelRefetch: false }

)

},

})

6

7

8

9

10

11

12

13

14

15

16

17

18

That's it for today. Feel free to reach out to me on twitter if you have any questions, or just leave a
comment below. ⬇️

Like the monospace font in the code blocks?

Check out monolisa.dev

© 2024 by TkDodo's blog. All rights reserved.
Theme by LekoArts

https://twitter.com/tkdodo
https://www.monolisa.dev/?ref=dominik
https://query.gg/?r=dom
https://github.com/LekoArts/gatsby-themes/tree/main/themes/gatsby-theme-minimal-blog
https://www.lekoarts.de/?utm_source=minimal-blog&utm_medium=Theme

