
~$ community Docs↗ Changelog↗ Download↗ Login

Introducing the Tailscale Universal Docker Mod

Xe Iaso (they/them) Tailscalar on April 14, 2023

Imagine a world where you could add applications to your tailnet the same way you add

machines to it. This would mean that http://wiki would go to your internal wiki,

http://code would take you to an IDE, and http://chat would take you to your

internal chat server. This is the world that Tailscale lets you create, but historically the

details on how you would actually do this are left as an exercise for the reader.

Today, we're introducing a new way to add Tailscale to your Docker containers: our

brand new universal Docker mod. This lets you add Tailscale to any Docker container

based on linuxserver.io images. This lets you have applications join your tailnet just as

easily as machines can. You can set up a wiki on http://wiki , an IDE at

http://code , and a chat server at http://chat and have them all be accessible

over your tailnet. You can even use this to expose your internal applications to the public

internet with Funnel.

<Xe> You can even use this to SSH into containers!

<Aoi> You can what into a container?

<Xe> Yep! Tailscale SSH lets you SSH into containers when you enable

the TAILSCALE_USE_SSH setting and permit access in the ACLs. This is

Events Blog

https://tailscale.dev/
https://tailscale.com/kb/
https://tailscale.com/changelog/
https://tailscale.com/download/
https://login.tailscale.com/start
https://xeiaso.net/
https://xeiaso.net/
https://pronouns.within.lgbt/they/them/their/theirs/themselves
https://github.com/linuxserver/docker-mods/blob/master/README.md
https://linuxserver.io/
https://tailscale.com/kb/1112/funnel/
https://tailscale.com/kb/1193/ssh/
https://tailscale.com/kb/1193/tailscale-ssh/#ensure-tailscale-ssh-is-permitted-in-acls
https://tailscale.dev/events
https://tailscale.dev/blog
https://tailscale.dev/search
https://tailscale.dev/search

a great way to get into a container without having to SSH into the docker

host and run docker exec -it <container> bash .

To add this to your existing Docker containers with linuxserver.io images, add the

following environment variables to your docker-compose.yml file:

This will add Tailscale to your container so that you can access it over your tailnet. If

you run docker compose up -d with the authkey changed out for a valid authkey,

you'll be able to access your apps over Tailscale.

Image generated by Ligne Claire v1.5, prompt: flat color, shipyard,
containers, mountains, no humans, space needle

- DOCKER_MODS=ghcr.io/tailscale-dev/docker-mod:main

tailscale configuration

make sure this is persisted in a volume

- TAILSCALE_STATE_DIR=/var/lib/tailscale

- TAILSCALE_SERVE_MODE=https

- TAILSCALE_SERVE_PORT=80

- TAILSCALE_USE_SSH=1

- TAILSCALE_HOSTNAME=wiki

uncomment to enable funnel

remember that if you do, it's exposed to the internet, so be car

#- TAILSCALE_FUNNEL=on

replace this with your authkey from the admin panel

- TAILSCALE_AUTHKEY=tskey-auth-hunter2CNTRL-hunter2hunter2

https://login.tailscale.com/admin/settings/keys

Docker and Docker mods
Docker allows you to create snapshots of operating system installs with a given state,

such as "having the Go compiler available" or "install this program and all its

dependencies" and distribute those preconfigured images on the Internet. When you

consume the same Docker image at two time intervals T0 and T1, you get the same

image with the same code, just as you expect.

When a Docker container is run, it usually runs on top of an ephemeral filesystem that

gets destroyed when the container is stopped. This means that restarting the container

will reset it back to the state that was there when the image was created. This is

normally convenient when working on applications that make temporary changes to the

filesystem, such as an image converter that uses temporary files to do the conversion

logic.

This is less convenient when you want to run things like database servers in Docker.

However, most of the time when you do things that need persistent state, that

persistent state is usually limited to a single file or directory. Docker provides external

persistent state with volumes. They're basically directories that are plunked into the

container at runtime, but it maintains the state between container runs. This is great for

things like databases because you wouldn't want to lose all your data when you restart

the container.

Disk

Host OS

Docker Image

Docker Container

persistent

cleared on container restart

Volumes

Code PackagesData Temporary
Data

code packages

So, from here we can create a hierarchy for docker and statefulness. You expect docker

containers to have state for data, and you also expect the docker container to be

https://go.dev/
https://docs.docker.com/storage/volumes/

running the same code every time you run the same image. You don't expect anything

else to be running, everything is deterministic at T0, T1, or TN.

<Xe> This is a valid hierarchy because it's what you expect from docker.

You expect the same code to run every time you run the same image.

What is humor?

Humor is a complicated concept that is almost universal throughout human cultures. It's a

way of conveying concepts like absurdity, irony, the absurdity of irony, and normally

frustrating things in ways that aren't quite as much of a downer. It's really about being

able to communicate subtle things like common errors that everyone makes when

learning things (such as English and its rule of all the rules having exceptions, even for the

exceptions). It's also a tool that you can use to help describe the abstract and

nonphysical things like emotions, feelings, ideas, the human condition, and how

Kubernetes works.

<Xe> Humor is also really hard to convey properly in a written medium.

This is even more difficult when the humor is about technology, which is

usually hard to understand in the first place. I'm going to try to explain the

humor in this article with these asides so that y'all can follow along, but if

you already get why this is funny it may ruin the joke for you. Sorry!

In his famous presentation Reverse emulating the NES, fellow philosopher in arms tom7

introduced the idea of a type of humor called "invalid hierarchies". In this he does rather

abusrd things to an NES using a custom circuit board and a raspbery pi to allow him to

(among other things) run an SNES emulator on the NES. This video is quite possibly one

of my favorite technical communication videos and is a huge influence to how I write

humorous things for this blog.

<Xe> This creates an invalid hierarchy because you expect the NES to

only run 8-bit NES games, but not 16-bit SNES games. This is funny. If

you've never seen that video before, it's well worth a watch.

Another example of an invalid hierarchy is my April Fool's Day post Using

Tailscale without using Tailscale. You'd expect to have to use Tailscale if

you want to use Tailscale, but "using Tailscale without using Tailscale"

creates an invalid hierarchy in the mind of the reader. This is also funny.

https://youtu.be/ar9WRwCiSr0
http://tom7.org/
https://tailscale.dev/blog/headscale-funnel
https://tailscale.dev/blog/headscale-funnel

Docker mods

Docker mods let you install extra packages and services into containers at runtime. If

the ONBUILD hook lets you run a series of commands when an image is built, you can

think of docker mods as a missing ONRUN hook that lets you customize an image at

runtime.

<Xe> This creates an invalid hierarchy because we think about the code

in a container being deterministic between invocations and this allows you

to make something nondeterministic. This is funny.

Docker mods and s6

At a high level, a docker mod is a series of files that add additional instructions to the

start phase of a docker container. It works because the linuxserver.io containers

preinstall s6 via s6-overlay and then start it in the background to manage the lifecycle

of services in the container.

<Xe> This is also funny because usually Docker containers aren't

supposed to have multiple processes running in them for simplicity, but it

turns out that when you want to do things like put your wiki seamlessly on

https://www.linuxserver.io/
https://skarnet.org/software/s6/
https://github.com/just-containers/s6-overlay

your tailnet, you want to have multiple processes running. This is another

invalid hierarchy because you expect the container to only have one

process running, but it has multiple with a service manager, just like the

host OS.

When I made the docker mod, I had to create a few s6 services to help it run:

<Xe> This is also hilarious because this roughly mirrors the process that

you have to do on your host OS to get Tailscale running. This is another

layer of invalid hierarchy because you expect containers to ship with all

the software they need, but here is this container that needs to download

software at runtime. This is funny because it's like a container that needs

to download software at runtime, just like your host OS. As above, so

below, eh?

Each of these is connected together like this (arrows indicate dependencies):

One to set a list of packages that Tailscale needs to run (jq to process some data

from the packages server, and iptables to configure the firewall inside the container

for Tailscale to run in a TUN device).

One to download Tailscale to the container.

One to start the Tailscale node agent tailscaled .

One to authenticate you to the tailnet with tailscale up and set other settings

like tailscale serve .

https://stedolan.github.io/jq/
https://linux.die.net/man/8/iptables
https://en.wikipedia.org/wiki/TUN/TAP
https://tailscale.com/kb/1241/tailscale-up/
https://tailscale.com/kb/1241/tailscale-up/
https://tailscale.com/kb/1241/tailscale-up/
https://tailscale.com/kb/1242/tailscale-serve/
https://tailscale.com/kb/1242/tailscale-serve/
https://tailscale.com/kb/1242/tailscale-serve/

<Xe> If you've ever worked deeply with the Heroku ecosystem, you can

think about Docker mods as akin to all of the hilarous hacks you can do

with buildpacks at dyno boot time.

Configuration
The Docker mod exposes a bunch of environment variables that you can use to

configure it. You can see the full list of environment variables in the documentation, but

here are the important ones:

Environment Variable Description Example

DOCKER_MODS

The list of additional mods to

layer on top of the running

container, separated by

pipes.

ghcr.io/tailscale-

dev/docker-

mod:main

https://github.com/tailscale-dev/docker-mod

Environment Variable Description Example

TAILSCALE_STATE_DIR

The directory where the

Tailscale state will be stored,

this should be pointed to a

Docker volume. If it is not,

then the node will set itself as

ephemeral, making the node

disappear from your tailnet

when the container exits.

/var/lib/tailscale

TAILSCALE_AUTHKEY

The authkey for your tailnet.

You can create one in the

admin panel. See here for

more information about

authkeys and what you can

do with them.

tskey-auth-

hunter2CNTRL-

hunter2hunter2

TAILSCALE_HOSTNAME

The hostname that you want

to set for the container. If

you don't set this, the

hostname of the node on

your tailnet will be a bunch of

random hexadecimal

numbers, which many humans

find hard to remember.

wiki

TAILSCALE_USE_SSH
Set this to 1 to enable SSH

access to the container.
1

TAILSCALE_SERVE_PORT

The port number that you

want to expose on your

tailnet. This will be the port of

your DokuWiki, Transmission,

or other container.

80

TAILSCALE_SERVE_MODE The mode you want to run

Tailscale serving in. This

should be https in most

cases, but there may be

times when you need to

enable tls-terminated-

tcp to deal with some weird

edge cases like HTTP long-

https

https://login.tailscale.com/admin/settings/keys
https://tailscale.com/kb/1085/auth-keys/

Environment Variable Description Example

poll connections. See here for

more information.

TAILSCALE_FUNNEL

Set this to true, 1, or t to

enable funnel. For more

information about the

accepted syntax, please read

the strconv.ParseBool

documentation in the Go

standard library.

on

Something important to keep in mind is that you really should set up a separate volume

for Tailscale state. Here is how to do that with the docker commandline:

Then you can mount it into a container by using the volume name instead of a host path:

If you want to use kernel networking mode, you will need to add the NET_ADMIN and

NET_RAW capabilities to the container, as well as pass the /dev/net/tun device into

the container. Here is an example of how to do that with the docker commandline:

In a compose.yaml file, it will look like this:

docker volume create dokuwiki-tailscale

docker run \

 ... \

 -v dokuwiki-tailscale:/var/lib/tailscale \

 ...

docker run \

 ... \

 --cap-add=NET_ADMIN \

 --cap-add=NET_RAW \

 --device=/dev/net/tun \

 ...

https://tailscale.com/kb/1242/tailscale-serve/
https://tailscale.com/kb/1243/funnel/
https://pkg.go.dev/strconv#ParseBool
https://pkg.go.dev/strconv#ParseBool
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://www.kernel.org/doc/Documentation/networking/tuntap.txt

This can be useful when you are running applications on your tailnet without tailscale
serve, and you want the underlying service to know the exact remote IP address (such

as when running a Minecraft server).

Fun things you can do
Normally when I write these articles, I tend to give you one functional example so that

you can fill in the blanks here. This time, I want to give you a few functional and

genuninely useful examples so that you can get started with our Docker mod right away.

If you want to test this with a simple command-line shell, you can run this docker

command to create a volume for Tailscale state, and then run a container with the

Docker mod installed:

<Xe> trap-sun is the name of the container that we will be running.

You can name it whatever you want, but you should use the same name in

both your volume and your container. I'm setting the name here in case

you get stuck and need to arbitrarily kill the container with

docker kill trap-sun .

version: '2.1'

services:

 dokuwiki:

 image: lscr.io/linuxserver/dokuwiki:latest

 volumes:

 - /dev/net/tun:/dev/net/tun

 cap_add:

 - NET_ADMIN

 - NET_RAW

 # ...

docker volume create trap-sun-state

docker run \

 --rm \

 -v trap-sun-state:/var/lib/tailscale \

 -e TAILSCALE_STATE_DIR=/var/lib/tailscale \

-e TAILSCALE SERVE PORT=3000 \

https://tailscale.com/kb/1242/tailscale-serve/
https://tailscale.com/kb/1242/tailscale-serve/

<Xe> You can also base your Docker images on the

lscr.io/linuxserver/baseimage-alpine:3.17 image, which is a

minimal Alpine Linux with Docker mod support. This can be used to adapt

your existing containers into nodes on your tailnet. You can also use

Ubuntu with lscr.io/linuxserver/baseimage-ubuntu:jammy as

the base image. The cloud's the limit!

DokuWiki

If you want to set up a wiki for your tailnet with DokuWiki, you can use this Docker

compose file:

 -e TAILSCALE_SERVE_PORT=3000 \

 -e TAILSCALE_SERVE_MODE=https \

 -e TAILSCALE_FUNNEL=on \

 -e TAILSCALE_USE_SSH=1 \

 -e TAILSCALE_HOSTNAME=trap-sun \

 -e TAILSCALE_AUTHKEY=tskey-auth-hunter2CNTRL-hunter2hunter2 \

 -e DOCKER_MODS=ghcr.io/tailscale-dev/docker-mod:main \

 --name trap-sun \

 -it \

 --cap-add=NET_ADMIN \

 --cap-add=NET_RAW \

 -v /dev/net/tun:/dev/net/tun \

 lsiobase/alpine:3.17 \

 sh

docker-compose.yaml

version: '2.1'

services:

 dokuwiki:

 image: lscr.io/linuxserver/dokuwiki:latest

 container_name: dokuwiki

 environment:

 - PUID=1000

 - PGID=1000

 - TZ=Etc/UTC

 - DOCKER_MODS=ghcr.io/tailscale-dev/docker-mod:main

 # tailscale information

 - TAILSCALE_STATE_DIR=/var/lib/tailscale

 - TAILSCALE_SERVE_PORT=80

https://alpinelinux.org/
https://ubuntu.com/
https://www.dokuwiki.org/dokuwiki

Then use docker compose up -d to start the DokuWiki container with Tailscale

grafted in. You can then access your DokuWiki instance at

https://wiki.yourtailnet.ts.net . You will want to do the setup wizard, and

then you can start using your own private wiki!

Your private cloud development environment with code-
server

Want to have all the fun of GitHub Codespaces without having to use GitHub's servers

for development? Set up your own private cloud with code-server and Tailscale!

 - TAILSCALE_SERVE_MODE=https

 ## uncomment to enable funnel, may be a bad idea for some use

 #- TAILSCALE_FUNNEL=on

 - TAILSCALE_USE_SSH=1

 - TAILSCALE_HOSTNAME=wiki

 - TAILSCALE_AUTHKEY=tskey-auth-hunter2CNTRL-hunter2hunter2

 volumes:

 - dokuwiki-data:/config

 - dokuwiki-tailscale:/var/lib/tailscale

 restart: unless-stopped

volumes:

 dokuwiki-data:

 dokuwiki-tailscale:

version: '2.1'

services:

 code-server:

 image: lscr.io/linuxserver/code-server:latest

 container_name: code-server

 environment:

 - PUID=1000

 - PGID=1000

 - TZ=Etc/UTC

 - PASSWORD=hunter2

 - PROXY_DOMAIN=code.shark-harmonic.ts.net

 - DOCKER_MODS=ghcr.io/tailscale-dev/docker-mod:main|ghcr.io/l

 # tailscale information

 - TAILSCALE_STATE_DIR=/var/lib/tailscale

https://docs.github.com/en/codespaces/overview
https://github.com/coder/code-server

Then use docker compose up -d to start the code-server container with Tailscale

grafted in. You can then access your code-server instance at

https://code.shark-harmonic.ts.net . You may want to change the password

from hunter2 to something more secure.

code-server also has support for cloning repositories from GitHub directly, so with this

you can get started hacking on a project on one machine, then seamlessly pick up where

you left off on another! You can start hacking at something in your office and then walk

over to the local Tim Horton's to finish it up!

There's a bunch of other containers in the linuxserver.io fleet, you can use Tailscale with

those as well. You can also check out Awesome-LSIO for more ideas!

At Tailscale, we want to recreate the Internet around the idea of small, trusted networks

with your friends, family, and coworkers. When you set up applications on your tailnet like

this, you can slowly start to use your own private infrastructure instead of relying on the

public Internet. This is a great way to start using Tailscale, and we hope that you will find

this Docker mod useful.

If you have any questions, feel free to reach out to us on Twitter or the Fediverse. We

are always happy to help!

 - TAILSCALE_SERVE_PORT=8443

 - TAILSCALE_SERVE_MODE=tls-terminated-tcp

 - TAILSCALE_USE_SSH=1

 - TAILSCALE_HOSTNAME=code

 - TAILSCALE_AUTHKEY=tskey-auth-hunter2CNTRL-hunter2hunter2

 volumes:

 - code-server-data:/config

 - code-server-tailscale:/var/lib/tailscale

 restart: unless-stopped

volumes:

 code-server-data:

 code-server-tailscale:

http://bash.org/?244321
http://bash.org/?244321
http://bash.org/?244321
https://fleet.linuxserver.io/
https://docs.linuxserver.io/general/awesome-lsio
https://twitter.com/tailscale
https://hachyderm.io/@tailscale

The official community site of Tailscale.

WireGuard is a registered trademark of Jason A. Donenfeld.

© Tailscale Inc.

