
Home

GPU-Accelerated LLM
on a $100 Orange Pi
Aug 9, 2023 • MLC Community

TL;DR
This post shows GPU-accelerated LLM running smoothly on an
embedded device at a reasonable speed. More specifically, on a $100
Orange Pi 5 with Mali GPU, we achieve 2.5 tok/sec for Llama2-7b and 5
tok/sec for RedPajama-3b through Machine Learning Compilation (MLC)
techniques. Additionally, we are able to run a Llama-2 13b model at 1.5
tok/sec on a 16GB version of the Orange Pi 5+ under $150.

Background
Progress in open language models has been catalyzing innovation across
question-answering, translation, and creative tasks. While current
solutions demand high-end desktop GPUs to achieve satisfactory
performance, to unleash LLMs for everyday use, we wanted to
understand how usable we could deploy them on the affordable
embedded devices.

https://blog.mlc.ai/
https://blog.mlc.ai/

Many embedded devices come with mobile GPUs that can serve as a
source of acceleration. In this post, we pick Orange Pi 5, a RK35888-
based board that is similar to Raspberry Pi but also features a more
powerful Mali-G610 GPU. This post summarizes our first attempt at
leveraging Machine Learning Compilation and provides out-of-box GPU
acceleration for this device.

Machine Learning Compilation for Mali

Machine learning compilation (MLC) is an emerging technology that
automatically compiles and optimizes machine learning workloads, and
deploys the compiled workload to a broad set of backends. At the time
of writing, based on Apache TVM Unity, MLC supports platforms
including browsers (WebGPU, WASM), NVIDIA GPUs (CUDA), AMD
GPUs (ROCm, Vulkan), Intel GPUs (Vulkan), iOS and MacBooks (Metal),
Android (OpenCL), and Mali GPUs (this post).

Generalizable ML Compilation for Mali Codegen

MLC is built on top of Apache TVM Unity, a generalizable stack for
compiling machine learning models across different hardwares and
backends. To compile LLMs onto Mali GPUs, we reuse all the existing
compilation pipeline without any code optimizations. More specifically,
we successfully deployed Llama-2 and RedPajama models with the
following steps:

Reuse model optimization passes, including quantization, fusion,
layout optimization, etc;
Reuse a generic GPU kernel optimization space written in TVM
TensorIR and re-target it to Mali GPUs;
Reuse OpenCL codegen backend from TVM, and re-target it to Mali
GPUs;
Reuse the existing user interface, including Python APIs, CLI, and
REST APIs.

Try it out
This section provides a step-by-step guide so that you can try it out on
your own orange pi device. Here we use RedPajama-INCITE-Chat-3B-
v1-q4f16_1 as the running example. You can replace that by ​​Llama-2-
7b-chat-hf-q4f16_1 or ​​Llama-2-13b-chat-hf-q4f16_1 (requires a
16GB board).

Prepare

Please first follow the instruction here, to setup the RK3588 board with
OpenCL driver. Then clone the MLC-LLM from the source, and
download weights and prebuilt libs.

clone mlc-llm from GitHub

git clone --recursive https://github.com/mlc-

ai/mlc-llm.git && cd mlc-llm

Download prebuilt weights and libs

git lfs install

mkdir -p dist/prebuilt && cd dist/prebuilt

git clone https://github.com/mlc-ai/binary-mlc-

llm-libs.git lib

git clone https://huggingface.co/mlc-ai/mlc-chat-

RedPajama-INCITE-Chat-3B-v1-q4f16_1

cd ../../..

Try out the CLI

Build mlc_llm_cli from the source code

cd mlc-llm/

create build directory

mkdir -p build && cd build

generate build configuration

python3 ../cmake/gen_cmake_config.py

build `mlc_chat_cli`

cmake .. && cmake --build . --parallel $(nproc)

&& cd ..

Verify installation

expected to see `mlc_chat_cli`, `libmlc_llm.so`

and `libtvm_runtime.so`

ls -l ./build/

expected to see help message

./build/mlc_chat_cli --help

Run LLMs through mlc_chat_cli

https://mlc.ai/mlc-llm/docs/install/gpu.html#orange-pi-5-rk3588-based-sbc

./build/mlc_chat_cli --local-id RedPajama-INCITE-

Chat-3B-v1-q4f16_1 –device mali

Try out the Python API

Build TVM runtime

clone from GitHub

git clone --recursive https://github.com/mlc-

ai/relax.git tvm_unity && cd tvm_unity/

create build directory

mkdir -p build && cd build

generate build configuration

cp ../cmake/config.cmake . && echo

"set(CMAKE_BUILD_TYPE

RelWithDebInfo)\nset(USE_OPENCL ON)" >>

config.cmake

build `mlc_chat_cli`

cmake .. && cmake --build . --target runtime --

parallel $(nproc) && cd ../..

Setup python path (please set it to the bashrc or zshrc for persistent
settings)

export TVM_HOME=$(pwd)/tvm_unity

export MLC_LLM_HOME=$(pwd)/mlc-llm

export

PYTHONPATH=$TVM_HOME/python:$MLC_LLM_HOME/python:${

Run the following python script.

from mlc_chat import ChatModule

from mlc_chat.callback import StreamToStdout

cm = ChatModule(model="RedPajama-INCITE-Chat-3B-

v1-q4f16_1")

Generate a response for a given prompt

output = cm.generate(

 prompt="What is the meaning of life?",

progress_callback=StreamToStdout(callback_interval=

)

Print prefill and decode performance statistics

print(f"Statistics: {cm.stats()}\n")

Discussion and Future Work
Our current experiments show that 3B models might be a sweet spot.
The RedPajama-3B model can provide up to 5 tok/sec and a decent chat
experience. There is also room for improvements, specifically around the
integer-to-float conversions. Moving forward, we will address the related
issues and improve Mali GPUs’ performance.

This post contributes to our quest to integrate LLMs into affordable
devices and bring AI to everyone. Our future endeavors will focus on
harnessing advancements in single-board computers, refining software
frameworks like OpenCL and MLC-LLM, and exploring broader
applications such as smart home devices. Collaborative efforts in the
open-source community and a commitment to continuous learning and
adaptation will be pivotal in navigating the evolving landscape of LLM
deployment on emerging hardware.

Contributions
LLM on Orange Pi is primarily completed by Haolin Zhang. The support
of mali optimizations comes from Siyuan Feng, with foundation support
from Junru Shao and Bohan Hou and other community members.

https://www.linkedin.com/in/haolin-zhang-534530231/

