
Back

Blog post

Implementing "seen by"
functionality with
Postgres
2022-07-18 • 33 minute read

Victor
Guest Author

tl;dr: Use HyperLogLog, it's a reasonable approach with

great trade-offs and no large architectural liabilities.

For a quick & dirty prototype, use hstore , which also

performs the best with integer IDs.

https://supabase.com/blog
https://github.com/t3hmrman
https://supabase.com/

The year is 2022. You're head DBA at the hot new social

site, SupaBook... Your startup is seeing eye-boggling

growth because everyone loves fitting their hot-takes

in posts restricted to VARCHAR(256) .

Why VARCHAR(256) ? No particular reason, but you

don't have time to get hung up on that or ask why --

you just found out that the priority this quarter is

tracking content views across all posts in the app.

"It sounds pretty simple" a colleague at the meeting

remarks -- "just an increment here and an increment

there and we'll know which posts are seen the most on

our platform". You start to explain why it will be non-

trivial, but the meeting ends before you can finish.

Well, it 's time to figure out how you're going to do it.

There's been a complexity freeze at the company, so

you're not allowed to bring in any new technology, but

you don't mind that because for v1 you would have

picked Postgres anyway. Postgres's open source

pedigree, robust suite of features, stable internals, and

awesome mascot make it a strong choice, and

it's what you're already running.

(insert record scratch here)

Sure, this scenario isn't real, but it could be - that last

part about Postgres definitely is. Let's see how you

might solve this problem, as that imaginary DBA.

Experiment setup

We've got the following simple table layout:

Slonik

https://www.vertabelo.com/blog/the-history-of-slonik-the-postgresql-elephant-logo/

In SQL migration form:

This basic setup has taken the (imaginary) company

quite far -- even though the posts table has millions

and millions of entries, Postgres chugs along and serves

our queries with impressive speed and reliability. Scaling

up is the new (and old) scaling out.

How should we do it?

hideCopy

1 CREATE EXTENSION IF NOT EXISTS uuid-ossp;

2 CREATE EXTENSION IF NOT EXISTS citext;

3

4 -- Create a email domain to represent and con

5 CREATE DOMAIN email

6 AS citext

7 CHECK (LENGTH(VALUE) <= 255 AND value ~ '^[a

8

9 COMMENT ON DOMAIN email is 'lightly validated

10

11 -- Create the users table

12 CREATE TABLE users (

13 id bigserial PRIMARY KEY GENERATED BY DEF

14 uuid uuid NOT NULL DEFAULT uuid_nonmc_v1(

15

16 email email NOT NULL,

17 name text,

18 about_html text,

19

20 created_at timestamptz NOT NULL DEFAULT N

21);

22

23 -- Create the posts table

24 CREATE TABLE posts (

25 id bigserial PRIMARY KEY GENERATED BY DEF

26 uuid uuid NOT NULL DEFAULT uuid_nonmc_v1(

27

28 title text,

29 content text,

30 main_image_src text,

31 main_link_src text,

32

33 created_by bigint REFERENCES users(id),

34

35 last_hidden_at timestamptz,

36 last_updated_at timestamptz,

37 created_at timestamptz NOT NULL DEFAULT N

38);

Well we can't pat ourselves for our miraculous and

suspiciously simple DB architecture all day, let's move

on to the task at hand.

Like any good tinkerer we'll start with the simplest

solutions and work our way up in complexity to try and

get to something outstanding, testing our numbers as

we go.

Try #1: The naive way, a simple counter on

every Post

The easiest obvious way to do this is to maintain a

counter on every tuple in the posts table. It 's obvious,

and it 's almost guaranteed to work -- but maybe not

work well.

The migration to make it happen isn't too difficult:

There's one obvious glaring issue here -- what if

someone sees the same post twice? Every page reload

would cause inflated counts in the seen_by_count

column, not to mention a lot of concurrent database

updates (which isn't necessarily Postgres's forte to

begin with).

Clearly there's a better way to do things but before

that...

hideCopy

1 BEGIN;

2

3 ALTER TABLE posts ADD COLUMN seen_by_count;

4

5 COMMENT ON COLUMN posts.seen_by_count

6 IS 'simple count of users who have seen the

7

8 COMMIT;

Writing a test suite before the CPUs
get hot and heavy

How will we know which approach is better without

numbers?! Measuring complexity and feeling can only

get us so far -- we need to get some numbers that tell

us the performance of the solution at the stated tasks -

- we need benchmarks.

Before we can declare any solution the best, in

particular we need a baseline!. The simplest possible

incorrect solution (simply incrementing a counter on

the Post) is probably a reasonable thing to use as a

benchmark, so let's take a moment to write our testing

suite.

Let's do this the simplest one might imagine:

Generate a large amount of users

Lets model for 1000, 10k, 100K, 1MM, and 10MM

users

Generate an even larger amount of fake posts

attributed to those users

This is a bit harder -- we need to define a general

distribution for our users that's somewhat

informed by real life...

An average/normalized distribution doesn't quite

work here --

!

on sites like twitter 10% of users

create 80% of the tweets

Generate a description of "events" that describe

which post was seen by whom, which we can replay.

We want the equivalent of an effect system or

monadic computation, which is easier than it

sounds -- we want to generate an encoding

(JSON, probably) of what to do, without actually

doing it

https://www.pewresearch.org/internet/2019/04/24/sizing-up-twitter-users/

OK, let's roll our hands up and get it done:

Script: User seeding

Here's what that looks like:

Nothing too crazy in there -- we generate a bunch of

JSON, and force it out to disk. It 's best to avoid trying

to keep it in memory so we can handle much larger

volumes than we might be able to fit in memory.

We'll just do consistent "as fast as we can"

execution (more complicated analysis would

burst traffic to be ab it closer to real life)

1 /**

2 * Generate a list of synthetic users to be l

3 *

4 * @param {object} args

5 * @param {number} [args.count] number of use

6 * @param {number} [args.aboutHTMLWordCount]

7 * @param {string} [args.outputFilePath] outp

8 * @returns {any[][]} List of generated synth

9 */

10 export async function generateUsers(args) {

11 const count = args.count || DEFAULT_USER_CO

12 const aboutHTMLWordCount = args.aboutHTMLWo

13

14 const outputFilePath = args.outputFilePath

15 if (!outputFilePath) {

16 throw new Error('output file path must be

17 }

18

19 for (var id = 0; id < count; id++) {

20 const user = {

21 id,

22 email: `user${id}@example.com`,

23 name: `user ${id}`,

24 about_html: fastLoremIpsum(aboutHTMLWor

25 }

26

27 // Write the entries to disk (returning n

28 if (args.outputFilePath) {

29 await appendFile(outputFilePath, `${JSO

30 }

31 }

32 }

If you'd like to see the code, check out

.

Script: Post seeding

Along with users, we need to generate posts that they

can view. We'll keep it simple and take an amount of

posts to make, generating from 0 to count of those.

It 's very similar to the user generation code, with the

caveat that we can take into account the 80/20

lurker/poster rule. here's what that looks like:

It 's a bit long so if you'd like to see the code, check out

.

Script: action (API call) seeding/generation

This script is a bit tricky -- we need to inject some

randomness in the performing of the following actions:

I've chosen to use so I needed to write a

request generation script which looks like this:

scripts/gener

ate/users.js in the repo

scripts/generate/posts.js in the repo

Record a new view of a post

Retrieve just the count of a single post

Retrieve all the users who saw a post

autocannon

1 const process = require('process')

2

3 const POST_COUNT = process.env.TEST_POST_COUN

4 ? parseInt(process.env.TEST_POST_COUNT, 10)

5 : undefined

6 const USER_COUNT = process.env.TEST_USER_COUN

7 ? parseInt(process.env.TEST_USER_COUNT, 10)

8 : undefined

9

10 /**

11 * Request setup function for use with autoca

12 *

13 * @param {Request} request

14 * @returns {Request}

15 */

16 function setupRequest(request) {

https://github.com/VADOSWARE/supabase-seen-by/blob/main/scripts/generate/users.js
https://github.com/VADOSWARE/supabase-seen-by/blob/main/scripts/generate/posts.js
https://www.npmjs.com/package/autocannon

Nothing too crazy here, and some back of the envelope

estimations on how often each operation would

normally be called. These numbers could be tweaked

more, but we should see a difference between

approaches even if we messed up massively here.

If you'd like to see the code, check out

.

Glue it all together

Once we're done we need to glue this all together into

one script, with roughly this format:

16 function setupRequest(request) {

17 // ENsure we have counts to go off of

18 if (!POST_COUNT || !USER_COUNT) {

19 throw new Error('Cannot setup request wit

20 }

21

22 // Pick a random post to do an operation on

23 const postId = Math.floor(Math.random() * P

24

25 // Choose pseudo-randomly whether to regist

26 const operationChoice = Math.floor(Math.ran

27 if (operationChoice < 1) {

28 // 10% of the time, get *all* the users

29 request.method = 'GET'

30 request.path = `/posts/${postId}/seen-by/

31 } else if (operationChoice < 7) {

32 // 60% of the time, get the count of seen

33 request.method = 'GET'

34 request.path = `/posts/${postId}/seen-by/

35 } else {

36 // 30% of the time, add a new seen-by ent

37 const userId = Math.floor(Math.random() *

38

39 // Most of the time we'll be *setting* se

40 // And we'll get the count (so we can sho

41 request.method = 'POST'

42 request.path = `/posts/${postId}/seen-by/

43 }

44

45 return request

46 }

47

48 module.exports = setupRequest

scripts/setup

-request.cjs in the repo

1 t d f lt f ti B h k()

https://github.com/VADOSWARE/supabase-seen-by/blob/main/scripts/setup-request.cjs

If you want to see what the code actually ended up

looking like, check out .

Along with the benchmark, we'll standardize on the

following settings:

Our first run, on the naive solution

Alright, finally we're ready. Let's see what we get on our

naive solution. We expect this to be pretty fast, because

not only is it wrong, but it 's just about the simplest

thing you could do.

On my local machine, here's our baseline (output from

):

1 export default async function runBenchmark()

2 // Start the server

3 // Reset before test

4 // Generate & insert users

5 // Generate & insert posts

6 // Generate actions (API Calls) to run

7 // Execute the API calls

8 // Write JSON results to tmpdir

9 // Stop the server

10 }

scripts/bench.js in the repo

1 export SEEN_BY_STRATEGY=simple-counter # or:

2 export TEST_USERS_JSON_PATH=/tmp/supabase-see

3 export TEST_POSTS_JSON_PATH=/tmp/supabase-see

4 export TEST_POST_COUNT=1000

5 export TEST_USER_COUNT=100000

6 export TEST_DURATION_SECONDS=60

7

8 ## Use custom postgres image built with hll e

9 ## NOTE: `make db-custom-image` must be run b

10 #export DB_IMAGE=postgres-14.4-alpine-hll

11 #export DB_IMAGE_TAG=latest

autocannon

1 ┌─────────┬──────┬──────┬───────┬──────┬─────

2 │ Stat │ 2.5% │ 50% │ 97.5% │ 99% │ Avg

3 ├─────────┼──────┼──────┼───────┼──────┼─────

4 │ Latency │ 0 ms │ 2 ms │ 6 ms │ 6 ms │ 2.03

5 └─────────┴──────┴──────┴───────┴──────┴─────

6 ┌───────────┬─────────┬─────────┬─────────┬──

7 │ Stat │ 1% │ 2 5% │ 50% │ 9

https://github.com/VADOSWARE/supabase-seen-by/blob/main/scripts/bench.js
https://www.npmjs.com/package/autocannon

As you might imagine, pretty darn good latency across

all the requests.

Back to trying things out

7 │ Stat │ 1% │ 2.5% │ 50% │ 9

8 ├───────────┼─────────┼─────────┼─────────┼──

9 │ Req/Sec │ 297 │ 318 │ 389 │ 5

10 ├───────────┼─────────┼─────────┼─────────┼──

11 │ Bytes/Sec │ 54.1 kB │ 57.9 kB │ 70.8 kB │ 9

12 └───────────┴─────────┴─────────┴─────────┴──

13

14 Req/Bytes counts sampled once per second.

15 # of samples: 60

16

17 ┌────────────┬──────────────┐

18 │ Percentile │ Latency (ms) │

19 ├────────────┼──────────────┤

20 │ 0.001 │ 0 │

21 ├────────────┼──────────────┤

22 │ 0.01 │ 0 │

23 ├────────────┼──────────────┤

24 │ 0.1 │ 0 │

25 ├────────────┼──────────────┤

26 │ 1 │ 0 │

27 ├────────────┼──────────────┤

28 │ 2.5 │ 0 │

29 ├────────────┼──────────────┤

30 │ 10 │ 0 │

31 ├────────────┼──────────────┤

32 │ 25 │ 0 │

33 ├────────────┼──────────────┤

34 │ 50 │ 2 │

35 ├────────────┼──────────────┤

36 │ 75 │ 3 │

37 ├────────────┼──────────────┤

38 │ 90 │ 5 │

39 ├────────────┼──────────────┤

40 │ 97.5 │ 6 │

41 ├────────────┼──────────────┤

42 │ 99 │ 6 │

43 ├────────────┼──────────────┤

44 │ 99.9 │ 9 │

45 ├────────────┼──────────────┤

46 │ 99.99 │ 16 │

47 ├────────────┼──────────────┤

48 │ 99.999 │ 23 │

49 └────────────┴──────────────┘

50

51 23k requests in 60.02s, 4.28 MB read

Now that we've got a basic baseline of our tests, let's

continue trying out ideas:

Try #2: Storing the users who did the

"see"ing, with hstore

The next obvious thing (and probably a core

requirement if we'd asked around), is knowing who

viewed each post. Well if we need to know who, then

we probably need to store some more information!

Postgres has and

, so let's try those. It 's pretty

obvious that having hundreds, thousands, or millions of

entries in one of these data structures, inside a tuple

isn't the greatest idea, but let's try it anyway and let the

numbers speak for themselves.

Here's what the migration would look like:

hstore provides support for both and

indices, but after reading we can

conclude that we don't necessarily need those for the

current set of functionality.

Caveats

native support for arrays a data

structure called a hstore

hideCopy

1 BEGIN;

2

3 CREATE EXTENSION IF NOT EXISTS hstore;

4

5 ALTER TABLE posts ADD COLUMN seen_count_hstor

6 NOT NULL DEFAULT ''::hstore;

7

8 COMMENT ON COLUMN posts.seen_count_hstore

9 IS 'count of users that have seen the post,

10

11 COMMIT;

GIST GIN

the documentation

https://www.postgresql.org/docs/current/arrays.html
https://www.postgresql.org/docs/current/hstore.html
https://www.postgresql.org/docs/14/indexes-types.html#INDEXES-TYPE-GIST
https://www.postgresql.org/docs/14/indexes-types.html#INDEXES-TYPES-GIN
https://www.postgresql.org/docs/current/hstore.html#id-1.11.7.25.7

Well as you might have imagined, this is obviously

pretty bad and will eventually be hard to scale. If you

expect only 0-50 entries in your column text[] is

perfectly fine, but thousands or millions is another

ballgame.

Thinking of how to scale this, a few ideas pop to mind:

Performance

OK, time to get on with it, let's see how it performs

with an hstore :

Compress our columns with which is newly

supported (I first heard

about this thanks to)

LZ4

TOAST column compression

Fujitsu's fantastic blog post

PARTITION our posts table

1 ┌─────────┬──────┬──────┬───────┬──────┬─────

2 │ Stat │ 2.5% │ 50% │ 97.5% │ 99% │ Avg

3 ├─────────┼──────┼──────┼───────┼──────┼─────

4 │ Latency │ 0 ms │ 2 ms │ 5 ms │ 6 ms │ 2.15

5 └─────────┴──────┴──────┴───────┴──────┴─────

6 ┌───────────┬─────────┬─────────┬─────────┬──

7 │ Stat │ 1% │ 2.5% │ 50% │ 9

8 ├───────────┼─────────┼─────────┼─────────┼──

9 │ Req/Sec │ 287 │ 305 │ 348 │ 5

10 ├───────────┼─────────┼─────────┼─────────┼──

11 │ Bytes/Sec │ 53.9 kB │ 56.9 kB │ 64.5 kB │ 9

12 └───────────┴─────────┴─────────┴─────────┴──

13

14 Req/Bytes counts sampled once per second.

15 # of samples: 60

16

17 ┌────────────┬──────────────┐

18 │ Percentile │ Latency (ms) │

19 ├────────────┼──────────────┤

20 │ 0.001 │ 0 │

21 ├────────────┼──────────────┤

22 │ 0.01 │ 0 │

23 ├────────────┼──────────────┤

24 │ 0.1 │ 0 │

25 ├────────────┼──────────────┤

26 │ 1 │ 0 │

27 ├────────────┼──────────────┤

28 │ 2.5 │ 0 │

29 ├────────────┼──────────────┤

30 │ 10 │ 0 │

31 ├ ┼ ┤

https://github.com/lz4/lz4
https://www.postgresql.org/docs/current/storage-toast.html
https://www.postgresql.fastware.com/blog/what-is-the-new-lz4-toast-compression-in-postgresql-14

Not too far off! While we didn't try the pathological

case(s) of millions of people liking the same post to hit

breaking point, a slightly more random distribution

seems to have done decently -- we actually have lower

99.999th percentile latency versus the simple counter.

An average of 2.15ms versus 2.05ms with the

simpler counter is a ~4% increase in the average latency

(though of course, the p99.999 is lower!).

Try #3: An Association table for

remembering who liked what

A likely requirement from the original scenario that

we've completely ignored is remembering which users

liked a certain post to. The easiest solution here is an

"associative" table like this one:

31 ├────────────┼──────────────┤

32 │ 25 │ 1 │

33 ├────────────┼──────────────┤

34 │ 50 │ 2 │

35 ├────────────┼──────────────┤

36 │ 75 │ 3 │

37 ├────────────┼──────────────┤

38 │ 90 │ 5 │

39 ├────────────┼──────────────┤

40 │ 97.5 │ 5 │

41 ├────────────┼──────────────┤

42 │ 99 │ 6 │

43 ├────────────┼──────────────┤

44 │ 99.9 │ 9 │

45 ├────────────┼──────────────┤

46 │ 99.99 │ 9 │

47 ├────────────┼──────────────┤

48 │ 99.999 │ 16 │

49 └────────────┴──────────────┘

50

51 22k requests in 60.02s, 4.1 MB read

In SQL:

Caveats

In production, you're going to want to do a few things

to make this even remotely reasonable long term:

hideCopy

1 begin;

2

3 create table posts_seen_by_users (

4 post_id bigint references posts (id),

5 user_id bigint references users (id),

6 seen_count bigint not null default 0 check

7 primary key (post_id, user_id)

8);

9

10 commit;

PARTITION the table (consider using partition-

friendly)pg_partman

Move old partitions off to slower/colder storage and

maintain snapshots

Summarize older content that might be seen lots

https://github.com/pgpartman/pg_partman

These are good initial stop-gaps, but a realistic setup

will have many problems and many more solutions to be

discovered.

(It will be a recurring theme but this is a spot where we

probably don't necessarily want to use stock Postgres but

instead want to use tools like ,

, or an external choice like).

Performance

Alright, enough dilly dally, let's run our test bench

against this setup:

Consider a partitioning key up front -- post IDs are

probably a reasonable thing to use if they're

sufficiently randomly distributed

Citus Columnar Storage

ZedStore ClickHouse

1 ┌─────────┬──────┬──────┬───────┬──────┬─────

2 │ Stat │ 2.5% │ 50% │ 97.5% │ 99% │ Avg

3 ├─────────┼──────┼──────┼───────┼──────┼─────

4 │ Latency │ 0 ms │ 2 ms │ 8 ms │ 8 ms │ 2.5

5 └─────────┴──────┴──────┴───────┴──────┴─────

6 ┌───────────┬─────────┬─────────┬─────────┬──

7 │ Stat │ 1% │ 2.5% │ 50% │ 9

8 ├───────────┼─────────┼─────────┼─────────┼──

9 │ Req/Sec │ 238 │ 254 │ 321 │ 4

10 ├───────────┼─────────┼─────────┼─────────┼──

11 │ Bytes/Sec │ 43.4 kB │ 46.3 kB │ 58.5 kB │ 8

12 └───────────┴─────────┴─────────┴─────────┴──

13

14 Req/Bytes counts sampled once per second.

15 # of samples: 60

16

17 ┌────────────┬──────────────┐

18 │ Percentile │ Latency (ms) │

19 ├────────────┼──────────────┤

20 │ 0.001 │ 0 │

21 ├────────────┼──────────────┤

22 │ 0.01 │ 0 │

23 ├────────────┼──────────────┤

24 │ 0.1 │ 0 │

25 ├────────────┼──────────────┤

26 │ 1 │ 0 │

27 ├────────────┼──────────────┤

28 │ 2.5 │ 0 │

29 ├────────────┼──────────────┤

30 │ 10 │ 0 │

31 ├────────────┼──────────────┤

https://docs.citusdata.com/en/stable/admin_guide/table_management.html#columnar-storage
https://github.com/greenplum-db/postgres/tree/zedstore
https://clickhouse.com/

A little bit more divergence here -- 99.999%ile latency

@ 30 which is almost double what it was for simple-

hstore.

Average is coming in at 2.50ms which is 16% slower

than simple-hstore and 21% slower than simple-counter.

Try #4: Getting a bit more serious: bringing

out the HyperLogLog

3 ├ ┼ ┤

32 │ 25 │ 1 │

33 ├────────────┼──────────────┤

34 │ 50 │ 2 │

35 ├────────────┼──────────────┤

36 │ 75 │ 4 │

37 ├────────────┼──────────────┤

38 │ 90 │ 7 │

39 ├────────────┼──────────────┤

40 │ 97.5 │ 8 │

41 ├────────────┼──────────────┤

42 │ 99 │ 8 │

43 ├────────────┼──────────────┤

44 │ 99.9 │ 11 │

45 ├────────────┼──────────────┤

46 │ 99.99 │ 25 │

47 ├────────────┼──────────────┤

48 │ 99.999 │ 30 │

49 └────────────┴──────────────┘

50

51 20k requests in 60.02s, 3.57 MB read

We'll just draw now.

What's you ask? Well it 's just a

probabilistic data structure! Don't worry if you've never

heard of it before, it 's a reasonably advanced concept.

You may have heard of and they're

somewhat related but they're not quite a great fit for

the problem we're solving since we want to know how

many people have seen a particular post. Knowing

whether one user has seen a particular post is useful

too -- but not quite what we're solving for here (and

we'd have to double-check our false positives anyway if

we wanted to be absolutely sure).

HyperLogLog provides a probabilistic data structure

that is good at counting distinct entries, so that means

that the count will not be exact, but be reasonably

close (depending on how we tune). We won't have false

positives (like with a bloom filter) -- we'll have a degree

of error (i.e. the actual count may be 1000, but the HLL

reports 1004).

the rest of the owl

HyperLogLog

Bloom Filters

https://knowyourmeme.com/memes/how-to-draw-an-owl
https://en.wikipedia.org/wiki/HyperLogLog
https://en.wikipedia.org/wiki/Bloom_filter

We have to take this into account on the UI side but

and maybe retrieve the full count if anyone ever really

needs to know/view individual users that have seen the

content, so we can fall back to our association table

there.

Given that

, this is probably one of the only solutions

that could actually work at massive scale with the

limitations we've placed on ourselves.

Here's what that looks like in SQL:

Here we need the extension,

which is generously made () open source by

.

NOTE that we still have access to the association table

-- and while we still insert rows into it, we can drop the

primary key index, and simply update our HLL (and leave

ourselves a note on when we last updated it).

Caveats

There's not much to add to this solution, as the heavy

lifting is mostly done by postgresql-hll , but there's

one big caveat:

every second there are about 6000 tweets

on Twitter(!)

hideCopy

1 BEGIN;

2

3 CREATE EXTENSION IF NOT EXISTS hll;

4

5 ALTER TABLE posts ADD COLUMN seen_count_hll h

6 NOT NULL DEFAULT hll_empty();

7

8 COMMENT ON COLUMN posts.seen_count_hll

9 IS 'HyperLogLog storing user IDs';

10

11 COMMIT;

citus/postgresql-hll

truly

citusdata

https://www.internetlivestats.com/twitter-statistics/
https://github.com/citusdata/postgresql-hll
https://github.com/citusdata/postgresql-hll/blob/master/LICENSE
https://www.citusdata.com/

There are also a few optimizations that are easy to

imagine:

Performance

The most complicated solution by far, let's see how it

fares:

This approach will need a custom Postgres image for

this, since hll is not an official contrib module

Batching inserts to the association table (storing

them in some other medium in the meantime -- local

disk, redis, etc)

Writing our association table entries in a completely

different storage medium altogether (like object

storage) and use and

 and delay or put off processing all together

Foreign Data Wrappers pg_cro

n

1 ┌─────────┬──────┬──────┬───────┬──────┬─────

2 │ Stat │ 2.5% │ 50% │ 97.5% │ 99% │ Avg

3 ├─────────┼──────┼──────┼───────┼──────┼─────

4 │ Latency │ 0 ms │ 2 ms │ 6 ms │ 6 ms │ 2.28

5 └─────────┴──────┴──────┴───────┴──────┴─────

6 ┌───────────┬─────────┬─────────┬─────────┬──

7 │ Stat │ 1% │ 2.5% │ 50% │ 9

8 ├───────────┼─────────┼─────────┼─────────┼──

9 │ Req/Sec │ 272 │ 285 │ 351 │ 4

10 ├───────────┼─────────┼─────────┼─────────┼──

11 │ Bytes/Sec │ 49.5 kB │ 51.9 kB │ 63.9 kB │ 8

12 └───────────┴─────────┴─────────┴─────────┴──

13

14 Req/Bytes counts sampled once per second.

15 # of samples: 60

16

17 ┌────────────┬──────────────┐

18 │ Percentile │ Latency (ms) │

19 ├────────────┼──────────────┤

20 │ 0.001 │ 0 │

21 ├────────────┼──────────────┤

22 │ 0.01 │ 0 │

23 ├────────────┼──────────────┤

24 │ 0.1 │ 0 │

25 ├────────────┼──────────────┤

26 │ 1 │ 0 │

27 ├────────────┼──────────────┤

28 │ 2 5 │ 0 │

https://www.postgresql.org/docs/current/postgres-fdw.html
https://github.com/citusdata/pg_cron

Another somewhat nuanced degradation in

performance -- while the 99.99%ile latency was nearly

2x higher, the average latency was actually lower than

the assoc-table approach @ 2.28ms .

The average latency on the HLL approach is 11% worse

than simple-counter, 6% worse than simple-hstore, and

faster than assoc-table alone, which is an improvement.

Oh, the other places we could go

One of the great things about Postgres is it 's expansive

ecosystem -- while Postgres may (and frankly should not)

beat the perfect specialist tool for your use case, it

often does an outstanding job in the general case.

Let's look into some more experiments that could be

run -- maybe one day in the future we'll get some

numbers behind these (community contributions are

welcome!).

28 │ 2.5 │ 0 │

29 ├────────────┼──────────────┤

30 │ 10 │ 0 │

31 ├────────────┼──────────────┤

32 │ 25 │ 1 │

33 ├────────────┼──────────────┤

34 │ 50 │ 2 │

35 ├────────────┼──────────────┤

36 │ 75 │ 4 │

37 ├────────────┼──────────────┤

38 │ 90 │ 6 │

39 ├────────────┼──────────────┤

40 │ 97.5 │ 6 │

41 ├────────────┼──────────────┤

42 │ 99 │ 6 │

43 ├────────────┼──────────────┤

44 │ 99.9 │ 9 │

45 ├────────────┼──────────────┤

46 │ 99.99 │ 28 │

47 ├────────────┼──────────────┤

48 │ 99.999 │ 59 │

49 └────────────┴──────────────┘

50

51 21k requests in 60.03s, 3.86 MB read

Incremental view maintenance powered by pg_ivm

If you haven't heard about it 's an extension for

handling Incremental View Maintenance -- updating

s when underlying tables change.

IVM is a hotly requested feature whenever views

(particularly materialized views) are mentioned, so

there has been much fanfare to it 's release.

There are a couple advantages we could gain by using

pg_ivm :

pg_ivm is quite new and cutting edge but looks to be

a great solution -- it 's worth giving a shot someday.

Doing graph computations with

As is usually the case in academia and practice, we can

make our problem drastically easier by simply changing

the data structures we use to model our problem!

One such reconfiguration would be storing the

information as a graph:

pg_ivm

VI

EW

Ability to time constrain calculations (newer posts

which are more likely to be seen can exist in instant-

access views)

We could theoretically remove the complicated

nature of the HLL all together by using COUNT with

IVM

AGE

https://github.com/sraoss/pg_ivm
https://www.postgresql.org/docs/14/sql-createview.html
https://age.apache.org/

As you might imagine, finding the number of "seen-by"

relations would simply be counting the number of

edges out of one of the nodes!

Well, the Postgres ecosystem has us covered here too!

 is an extension that allows you to perform graph

related queries in Postgres.

We won't pursue it in this post but it would be a great

way to model this problem as well -- thanks to the

extensibility of Postgres, this data could live right next

to our normal relational data as well.

So what's the best way to do it?

OK, so what's the answer at the end of the day? What's

the best way to get to that useful v1? Here are the

numbers:

AGE

https://age.apache.org/

In tabular form:

Approach Avg (ms) 99%ile (ms) 99.999%ile (ms)

simple-counter 2.03 6 23

simple-hstore 2.15 6 16

assoc-table 2.5 8 30

hll 2.16 7 27

If we go strictly with the data, the best way looks to be

the hstore -powered solution, but I think the HLL is

probably the right choice.

The HLL results were quite variable -- some runs were

faster than others, so I've taken the best of 3 runs.

Even though the data says hstore , knowing that

posts will be seen by more and more people over time, I

might choose the HLL solution for an actual

implementation. It 's far less likely to pose a bloated row

problem, and it has the absolute correctness (and later

recall) of the assoc-table solution, while performing

better over all (as you can imagine, no need to COUNT

rows).

Another benefit of the HLL solution is that

 allow us to put the association table on a

different, slower storage mechanism, and keep our po

sts table fast. Arguably in a real system we might have

the HLL in something like redis but for a v1, it looks

like Postgres does quite well!

Wrap-up

I hope you enjoyed this look down the trunk hole, and

you've got an idea of how to implement solutions to

surprisingly complex problems like this one with

Postgres.

As usual, Postgres has the tools to solve the problem

reasonably well (if not completely) before you reach out

for more complicated/standalone solutions.

See any problems with the code, solutions that haven't

been tried? -- reach out, or open an issue!

More Postgres resources

Share this article

PostgreSQL

tablespaces

Partial data dumps using Postgres Row Level Security

Postgres Views

Postgres Auditing in 150 lines of SQL

Cracking PostgreSQL Interview Questions

What are PostgreSQL Templates?

Realtime Postgres RLS on Supabase

https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://supabase.com/blog/partial-postgresql-data-dumps-with-rls
https://supabase.com/blog/postgresql-views
https://supabase.com/blog/audit
https://supabase.com/blog/cracking-postgres-interview
https://supabase.com/blog/postgresql-templates
https://supabase.com/blog/realtime-row-level-security-in-postgresql

Last post

Supabase Flutter SDK 1.0 Developer

Preview
2 August 2022

Next post

Revamped Auth Helpers for Supabase (with

SvelteKit support)
13 July 2022

Related articles

Supabase Beta May 2023

Supabase Vecs: a vector client for Postgres

Flutter Hackathon Winners

ChatGPT plugins now support Postgres & Supabase

Building ChatGPT Plugins with Supabase Edge Runtime

View all posts

https://twitter.com/share?text=Implementing%20%22seen%20by%22%20functionality%20with%20Postgres&url=https://supabase.com/blog/seen-by-in-postgresql
https://www.linkedin.com/shareArticle?url=https://supabase.com/blog/seen-by-in-postgresql&title=Implementing%20%22seen%20by%22%20functionality%20with%20Postgres
https://news.ycombinator.com/submitlink?u=https://supabase.com/blog/seen-by-in-postgresql&t=Implementing%20%22seen%20by%22%20functionality%20with%20Postgres
https://supabase.com/blog

Build in a weekend, scale to millions

Start your project

Product

Database

Auth

Functions

Realtime

Storage

Vector

Pricing

Launch Week 7

Resources

Support

System Status

Integrations

Experts

Brand Assets / Logos

DPA

SOC2

Developers

Documentation

Changelog

Contributing

Company

Blog

Customer Stories

Careers

https://supabase.com/dashboard
https://supabase.com/
https://twitter.com/supabase
https://github.com/supabase
https://discord.supabase.com/
https://youtube.com/c/supabase
https://supabase.com/database
https://supabase.com/auth
https://supabase.com/edge-functions
https://supabase.com/realtime
https://supabase.com/storage
https://supabase.com/vector
https://supabase.com/pricing
https://supabase.com/launch-week
https://supabase.com/support
https://status.supabase.com/
https://supabase.com/partners/integrations
https://supabase.com/partners/experts
https://supabase.com/brand-assets
https://supabase.com/legal/dpa
https://forms.supabase.com/soc2
https://supabase.com/docs
https://supabase.com/changelog
https://supabase.com/docs/handbook/contributing
https://supabase.com/blog
https://supabase.com/customers
https://supabase.com/careers

Open Source

SupaSquad

DevTo

RSS

Company

Terms of Service

Privacy Policy

Acceptable Use Policy

Support Policy

Service Level Agreement

Humans.txt

Lawyers.txt

Security.txt

© Supabase Inc

https://supabase.com/open-source
https://supabase.com/supasquad
https://dev.to/supabase
https://supabase.com/rss.xml
https://supabase.com/company
https://supabase.com/terms
https://supabase.com/privacy
https://supabase.com/aup
https://supabase.com/support-policy
https://supabase.com/sla
https://supabase.com/humans.txt
https://supabase.com/lawyers.txt
https://supabase.com/.well-known/security.txt

