
lukeaschenbrenner / TxtNet-Browser Public

TxtNet-Browser / README.md

lukeaschenbrenner Added an experimental server phone number History

 3 contributors

Code Issues 4 Pull requests Actions Projects Security Insights

 master

TxtNet Browser

Browse the Web over SMS, no WiFi or Mobile Data required!

TextNet Browser is an Android app that allows anyone around the world to browse the web without a
mobile data connection! It uses SMS as a medium of transmitting HTTP requests to a server where a
pre-parsed HTML response is compressed using Google's Brotli compression algorithm and encoded
using a custom Base-114 encoding format (based on Basest).

In addition, any user can act as a server using their own phone's primary phone number and a Wi-
Fi/data connection at the press of a button, allowing for peer-to-peer distributed networks.

106 lines (76 sloc) 10.7 KB

https://github.com/lukeaschenbrenner
https://github.com/lukeaschenbrenner/TxtNet-Browser
https://github.com/lukeaschenbrenner/TxtNet-Browser
https://github.com/lukeaschenbrenner
https://github.com/lukeaschenbrenner
https://github.com/lukeaschenbrenner/TxtNet-Browser/commit/151a5b923d99727823b0cb5c10e9f40c6136a670
https://github.com/lukeaschenbrenner/TxtNet-Browser/commits/master/README.md
https://github.com/lukeaschenbrenner/TxtNet-Browser
https://github.com/lukeaschenbrenner/TxtNet-Browser/issues
https://github.com/lukeaschenbrenner/TxtNet-Browser/pulls
https://github.com/lukeaschenbrenner/TxtNet-Browser/actions
https://github.com/lukeaschenbrenner/TxtNet-Browser/projects
https://github.com/lukeaschenbrenner/TxtNet-Browser/security
https://github.com/lukeaschenbrenner/TxtNet-Browser/pulse
https://github.com/lukeaschenbrenner/TxtNet-Browser/raw/master/app/src/main/ic_launcher-playstore.png
https://github.com/google/brotli
https://github.com/saxbophone/basest-python

Download

See the releases page for an APK download of the TxtNet Browser client. A
Google Play release is coming soon.

TxtNet Browser is currently compatible with Android 4.4-13+.

Running Server Instances (uptime not guaranteed)

Country Phone Number Notes

United States +1(913)203-2719 Supports SMS to these countries

Let me know if you are interested in hosting a server instance for your area!

Please note: All web traffic should be considered unencrypted, as all requests are made over
SMS and received in plaintext by the server!

How it works (client)

This app uses a permission that allows a broadcast reciever to recieve and parse incoming SMS
messages without the need for the app to be registered as the user's default messaging app. While
granting an app SMS permissions poses a security concern, the code for this app is open source and
all code involving the use of internet permissions are compartamentalized to the server module. This
ensures that unless the app is setup to be a server, no internet traffic is transmitted. In addition, as
the client, SMS messages are only programatically sent to and recieved from a registered server
phone number. The app communicates with a "server phone number", which is a phone number
controlled by a "server host" that communicates directly over SMS using Android's SMS APIs. Each
URL request is sent, encoded in a custom base 114, to the server. Usually, this only requires 1 SMS,
but just in case, each message is prepended with an order specifier. When the server receives a
request, the server uses an Android WebView component to programatically request the website in a
manner that simulates a regular request, to avoid restrictions some services (such as Cloudflare)
place on HTTP clients. By doing this, any Javascript can also execute on the website, allowing
content to be dynamically loaded into the HTML if needed. Once the page is loaded, only the HTML
is transferred back to the recipient device. The HTML is stripped of unnecessary tags and attributes,
compressed into raw bytes, and then encoded. Once encoded, the messages are split into 160
character numbered segments (maximizing the GSM-7 standard SMS size) and sent to the client app
for parsing and displaying.

Side note: Compression savings have been estimated to be an average of 20% using Brotli, but
oftentimes it can save much more! For example, the website example.com in stripped HTML is 285
characters, but only requires 2 SMS messages (189 characters) to receive. Even including the 225%
overhead in data transmission, it is still more efficient!

https://github.com/lukeaschenbrenner/TxtNet-Browser/releases
https://github.com/lukeaschenbrenner/TxtNet-Browser/issues/2#issuecomment-1510506701
https://en.wikipedia.org/wiki/GSM_03.38

Why encode the HTML in the first place?

SMS was created in 1984, and was created to utilize the extra bytes from the data channels in phone
signalling. It was originally conceived to only support 128 characters in a 7-bit alphabet. When further
characters were required to support a subset of the UTF-8 character set, a new standard called UCS-
2 was created. Still limited by the 160 bytes available, UCS-2 supports more characters (many of
which show up in HTML documents) but limits SMS sizes to 70 characters per SMS. By encoding all
data in GSM-7, more data can be sent per SMS message than sending the raw HTML over SMS. It is
possible that it may be even more efficient to create an encoding system using all the characters
available in UCS-2, but this limits compatibility and is out of the scope of the project.

Server Hosting

TxtNet Browser has been rewritten to include a built-in server hosting option inside the app. Instead
of the now-deprecated Python server using a paid SMS API, any user can now act as a server host,
allowing for distributed communication.
To enable the background service, tap on the overflow menu and select "TxtNet Server Hosting".
Once the necessary permissions are granted, you can press on the "Start Service" toggle to initialize
a background service.
TxtNet Server uses your primary mobile number associated with the active carrier subscription SIM
as a number that others can add and connect to.
Please note that this feature is still in early stages of development and likely has many issues. Please
submit issue reports for any problems you encounter.
For Android 4.4-6.0, you will need to run adb commands one time as specified in the app. For
Android 6.0-10.0, you may also use Skizuku, but a PC will still be required once. For Android 11+, no
PC is required to activate the server using Shizuku.

Desktop Server Installation (Deprecated)

The current source code is pointed at my own server, using a Twilio API with credits I have
purchased. If you would like to run your own server, follow the instructions below: 1. Register for an
account at [Twilio](https://twilio.com/), purchase a toll-free number with SMS capability, and purchase
credits. (This project will not work with Twilio free accounts) 2. Create a Twilio application for the
number. 3. Sign up for an [ngrok](http://ngrok.com/) account and download the ngrok application 4.
Open the ngrok directory and run this command: `./ngrok tcp 5000` 5. Visit the [active numbers]
(https://console.twilio.com/US1/develop/phone-numbers/manage/incoming) page and add the ngrok
url to the "A Message Comes In" section after selecting "webhook". For example:
"https://xyz.ngrok.io/receive_sms" 6. Download the TxtNet Browser [server script]
(https://github.com/lukeaschenbrenner/TxtNet-Browser/blob/master/SMS_Server_Twilio.py) and
install all the required modules using "pip install x" 7. Add your Twilio API ID and Key into your
environment variables, and run the script! `python3 ./SMS_Server_Twilio.py` 8. In the TxtNet Browser
app, press the three dots and press "Change Server Phone Number". Enter in the phone number you
purchased from Twilio and press OK!

https://shizuku.rikka.app/guide/setup/
https://twilio.com/
http://ngrok.com/
https://console.twilio.com/US1/develop/phone-numbers/manage/incoming
https://xyz.ngrok.io/receive_sms
https://github.com/lukeaschenbrenner/TxtNet-Browser/blob/master/SMS_Server_Twilio.py

FAQ/Troubleshooting

Bugs:

Many carriers are unnecessarily rate limiting incoming text messages, so a page may look as
though it "stalled" while loading on large pages. As of now the only way to fix this is to wait!

In congested networks, it's possible for a mobile carrier to drop one or more SMS messages
before they are recieved by the client. Currently, the app has no logic to mitigate this issue, so
any websites that have stalled for a significant amount of time should be requested again.

In Android 12 (or possibly a new version of Google Messages?), there is a new and "improved"
messages blocking feature. This results in no SMS messages getting through when a number is
blocked, which makes the blocking feature of TxtNet Browser break the app! Instead of blocking
messages, to get around this "feature", you can silent message notifications from the server
phone number.

https://github.com/lukeaschenbrenner/TxtNet-Browser/raw/master/media/silentMessages.png
https://github.com/lukeaschenbrenner/TxtNet-Browser/raw/master/media/Messages_Migrating_Popup.png
https://github.com/lukeaschenbrenner/TxtNet-Browser/raw/master/media/MigratingBlockedContacts.png

Screenshots (TxtNet 1.0)

https://github.com/lukeaschenbrenner/TxtNet-Browser/raw/master/media/screenshot1.png
https://github.com/lukeaschenbrenner/TxtNet-Browser/raw/master/media/screenshot2.png

Demo (TxtNet 1.0)

 demo.mp4

Demo video shown above

0:00

https://github.com/lukeaschenbrenner/TxtNet-Browser/raw/master/media/screenshot3.png
https://github.com/lukeaschenbrenner/TxtNet-Browser/raw/master/media/screenshot4.png

Development

 If you are skilled in Android UI design, your help would be greatly
appreciated! A consistent theme and dark mode would be great
additions to this app.

Feel free to submit pull requests! I am a second-year CS student with basic knowledge of Android
Development and Server Development, and greatly appreciate help and support from the community.

Future Impact

My long-term goal with this project is to eventually reach communities where such a service would be
practically useful, which may include:

Those in countries with a low median income and prohibitively expensive data plans

Those who live under oppressive governments, with near impenetrable internet censorship

If you think you might be able to help funding a local country code phone number or server, or have
any other ideas, please get in contact with the email in my profile description!

License

GPLv3 - See LICENSE.md

Credits

Thank you to everyone who has contributed to the libraries used by this app, especially Brotli and
Basest. Special thanks goes to Coldsauce, whose original project Cosmos Browser was the original
inspiration for this project!
My original reply to his Hacker News comment is here. In addition, I would like to thank Zachary
Wander from XDA for their excellent Shizuku implementation tutorial and Aayush Atharva for the
amazing foundation they created with Brotli4J, allowing for a streamlined forking process to create
the library BrotliDroid used in this app.

https://github.com/ColdSauce
https://github.com/ColdSauce/CosmosBrowserAndroid
https://news.ycombinator.com/item?id=30685223#30687202
https://www.xda-developers.com/implementing-shizuku/
https://github.com/hyperxpro/Brotli4j/

