. Oskar Dudycz

-~ Pragmatic about programming

Postgres Superpowers in Practice

i 2023-04-15 & OSKARDUDYCZ @ POSTGRES

Look! Up in the sky! It's a bird! It's a plane! It's Superman! | have such a thought quite often

while working with Postgres. Why?

Let's say that you're building Car Fleet Management System. You must manage all data
about the company'’s cars, drivers, trips, fuel management, etc. In a nutshell, that's more
around accounting and compliance than driving. If your company is a big one in the
logistics space, you have a lot of data to manage and process.

Let's start with a simple case: trip management. We could come up with the following table:

Start Categories Training About Talks -

https://event-driven.io/en/category?category=Postgres
https://www.youtube.com/watch?v=I_PupTXEcXU
https://event-driven.io/en/
https://event-driven.io/static/45432bd59909acaa65d9150df4e3b0bb/5a190/2023-04-15-cover.png
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

CREATE TABLE

TIMESTAMP NULL
INT NULL
VARCHAR (255 NULL
TEXT NULL
TEXT NULL
NUMERIC(10,2 NULL
NUMERIC(10,2 NULL

PRIMARY KEY

It's a simplified version, but it covers basic needs. We have trip per vehicle, driver
information, how long the trip was, and how much fuel was used. That doesn’t look scary,
but if we'd like to make it fast and scalable for reporting and alerting needs, then we should
do better than that. Of course, we could add some indexes, but we might still need more
adjustments. The data size could grow, and querying and processing might need to be
faster. Especially keeping in mind that this may be just the centrepiece of the normalised
table schema, add into that table that tracks online the GPS location, and the size of data is
skyrocketing like Superman in the sky.

Postgres provides built-in partitioning capabilities. In a nutshell, we can define what data
from the table we're using to partition our data. Data will be physically stored in different
disk locations grouped by partition criteria. Postgres will handle the routing of inserts,

queries, etc. We can still use the table as the regular one.

In our case, we could use the partitioning-by-date strategy because we'll be primarily
interested in trips in a selected time range. We can do that by adding PARTITION BY RANGE
(trip_time) in our table definition:

CREATE TABLE

TIMESTAMP NULL
INT NULL
VARCHAR (255 NULL
TEXT NULL
TEXT NULL
NUMERIC(10,2 NULL
NUMERIC(10,2 NULL

PRIMARY KEY

Start Categories Training About Talks

https://www.postgresql.org/docs/current/ddl-partitioning.html
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

We don't need to change our queries or inserts. We can also detach and attach those
partitions by a single command, which makes ops work much easier.

That's neat, and the topic is on the blog by itself. Still, it has some tedious parts. For
instance, you need to define partitions explicitly upfront; Postgres won't create them
automatically while inserting data.

Typically, there’s some CRON job setting up partitions, e.g.

DO DECLARE
DATE '2023-01-01'
DATE '2023-12-01"'
BEGIN
WHILE LOOP
EXECUTE format('
CREATE TABLE trips %s PARTITION OF trips
FOR VALUES FROM (%L) TO (%L);'
'YYYY MM'

INTERVAL 'l month'
INTERVAL 'l month'

END LOOP
END

Sometimes they're used in triggers before inserting new rows.

Not that terrible, but with a bigger scale, managing that can get complicated.

Introducing TimescaleDB

Postgres is not only Superman but also Transformer. From the ground basis, it is built to
support extensions without changing the core database system. PostgreSQL extensions can
enhance the core features with new data types, functions, operators, indexing methods, and
more. You can write them in languages like C, Rust, etc. Extensions are a way to package
and distribute these additional features, making it easy for users to install and manage
them.

Start Categories Training About Talks -

https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

There are a lot of mature plugins provided by external companies and communities. Most
of them are open-sourced and free. One of them is TimescaleDB. Their slogan is “Postgres
for time-series”. And it's like that. It provides various tooling to make your time-based
analytics and data processing easier and faster. You can install it on your Postgres

installation for free, but most hostings (also big cloud providers) provide you with an
option to enable it out of the box.

Once you have it, toggle it with the following SQL:

CREATE IF EXISTS

It's a Postgres built-in syntax and a general pattern for enabling extensions.

Ok, getting back to TimescaleDB and partitioning. Postgres has a feature that maybe is not
as super as Superman, but at least it's hyper.

SELECT 'trips', 'trip time'

create_hypertable is a custom function that enables partitioning on TimescaleDB steroids.
We don't need to create partitions; TimescaleDB will handle that for us and do other
performance optimisation.

That's also why TimescaleDB is an excellent solution for IoT. When we have a huge data
coming in a short period, the built-in internal capabilities can optimise the ingress for us.

That's sweet, but let's not stop here and just do simple queries you can imagine (like
average distance in a date range, etc.).

Let’s build a report calculating the average fuel efficiency in the last 30 days. This is quite
useful in Fleet Management to detect fraud on people forgetting to log all trips, using the
car for their needs, etc. We can do that by getting the average usage per kilometre. It's, of
course, a simplified scenario, but you get the idea.

CREATE VIEW
WITH AS
SELECT 'l day' AS

Start Categories Training About Talks

https://www.timescale.com/
https://github.com/oskardudycz/postgres-for-dotnet-dev/blob/888f2c817cc9a871daffadaefdaf9e49cc132c42/Dockerfile#L5
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

AVG AVG AS
FROM
WHERE now INTERVAL '30 days'
GROUP BY

Materialised views are a feature that enables you to build a read-only aggregation of your
table data; what's more, they're not calculated on the fly while doing queries but stored
on disk, thus getting better performance. They're automatically available in Postgres and
cool enough, but again a bit tedious, as you need to trigger their recalculation manually.
That's necessary, as rebuilding them may take time and be resource-demanding. You
probably know where I'm going; yes, TimescaleDB can help you with the continuous
aggregates feature.

We need to mark our materialised view using WITH (timescaledb.continuous) and add policy:

SELECT
'vehicle fuel efficiency avg'
INTERVAL '30 days'
INTERVAL 'l second'
INTERVAL 'l day'

We're defining the initial date range of recalculation (from 30 days till 1 second ago) and the
interval in which it should be updated (1 day). From now on, TimescaleDB will refresh
materialised view for us automatically.

TimescaleDB extends Postgres also with a cron-like scheduler. It uses it internally to
update materialised views. We'll use it later.

By the way, Interval is also a decent example of custom types feature Postgres provides.

TimescaleDB defines this one, but you can define your own.

Generating alerts

Let's use our materialised view to generate alerts based on detected fuel usage anomalies.
This table could look as:

Start Categories Training About Talks -

https://docs.timescale.com/getting-started/latest/create-cagg/
https://www.postgresql.org/docs/current/sql-createtype.html
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

CREATE TABLE fuel efficiency alerts (
vehicle _id INT NOT NULL,
start_time TIMESTAMP NOT NULL,
end_time TIMESTAMP NOT NULL,
fuel efficiency NUMERIC(10,2) NOT NULL,
PRIMARY KEY (vehicle id, start_time)

)

Let's not define it as hypertable; why? I'll explain that later, for now, trust me, that's better.
We won't be querying it; just getting information about the new records.

How to generate alerts? Let's define a function for that:

CREATE OR REPLACE FUNCTION check fuel efficiency and insert alerts(p _job id INT
RETURNS VOID AS $%
BEGIN
INSERT INTO
fuel efficiency alerts (
vehicle_id,
start_time,
end_time,
fuel _efficiency
)
SELECT
vehicle_id,
bucket AS start_time,
bucket + INTERVAL 'l day' AS end time,
fuel _efficiency_avg AS fuel _efficiency
FROM
vehicle fuel efficiency avg
WHERE
fuel efficiency avg < 5
AND bucket >= now() - INTERVAL '30 days'
ON CONFLICT (vehicle_id, start_time) DO UPDATE
SET
fuel efficiency = EXCLUDED.fuel _efficiency,
end_time = EXCLUDED.end_time;

DELETE FROM
fuel efficiency alerts AS a

Start Categories Training About Talks =

https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

NOT EXISTS (
SELECT 1
FROM
vehicle_fuel efficiency_avg AS f
WHERE
a.vehicle_id = f.vehicle_id
AND f.bucket >= now() - INTERVAL '30 days'
AND a.start_time = f.bucket
AND f.fuel efficiency avg < 5
)i
END;
$$ LANGUAGE plpgsql;

Nothing fancy here; we're generating alerts based on the magic factor of average fuel usage
(equal to 5), inserting or updating the current alert information and cleaning obsolete alerts.

| told you before that I'll use the TimescaleDB scheduler. Now it's the right time.

We can do it by calling the following function:

SELECT add job('check fuel efficiency and insert_alerts', '5 seconds');

It tells which function should be called in which interval. Simple as that!

Having the data, we can generate a report that shows the fuel efficiency for each vehicle
over time, as well as any alerts that have been generated.

SELECT trips.vehicle_id,
trips.trip_time,
trips.distance_kilometers/trips.fuel_used liters AS fuel efficiency,
fuel efficiency alerts.start_time,
fuel _efficiency alerts.end_time
FROM trips
LEFT JOIN vehicle_fuel_efficiency_avg
ON trips.vehicle_id = vehicle_fuel efficiency avg.vehicle_id
AND time_bucket('l day', trips.trip_time) = vehicle_fuel_efficiency_avg.buc
LEFT JOIN fuel efficiency alerts ON trips.vehicle_id = fuel efficiency alerts.v
WHERE trips.trip time >= now() - INTERVAL '30 days'
ORDER BY trips.vehicle id, trips.trip time;

Start Categories Training About Talks -

https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

Adding PostGIS

To not make this a TimescaleDB love poem, let's introduce another extension to give you
broader coverage of the Postgres capabilities.

PostGIS is a plugin that enables advanced storage and transformation of spatial data, so
geographic locations etc. It's compatible with most of the standards for storing and
transforming positions. Sounds like we could use for our trips, aye?

Let's enable PostGIS:

CREATE IF EXISTS

And extend our table with route information.

ALTER TABLE
ADD COLUMN GEOMETRY (LINESTRING, 4326) NULL

GEOMETRY is one of the types that PostGIS is adding. It allows you to store multiple points
inside a single column. Of course, in the real world, we'd keep the GPS recordings in a
dedicated table, but we could also keep a summary with the main route points in the trips
table. We could use it to display it on the map in the Ul.

If we store our start and end position in a format {Latitude}, {Longitude}, e.g. 52.292064,
21.036320, we can also provide a default value based on the start and end locations.

UPDATE
SET

"POINT('
I’I 1 | I |
I’I 2 I)I
4326
"POINT('

Start Categories Training About Talks

https://postgis.net/
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

4326

4326
WHERE NULL

ALTER TABLE
ALTER COLUMN SET NULL

You already see examples of the multiple functionalities that PostGis provides, e.g.
parsing points and creating lines from them.

And hey, why not go further? We could notice that distance kilometres and start and end
locations could be derived from route information. Why do we always need to calculate
them when inserting? Actually, there’s no need, as vanilla Postgres can help with that!

Generated columns

Postgres provides an option to automatically compute the column'’s value based on the
data from others and store it for you inside the other column. This feature is called
Generated columns. Let's showcase them by calculating data derived from the route in our

trip table.

ALTER TABLE

DROP COLUMN

ADD COLUMN NUMERIC(10, 2
AS 1000

DROP COLUMN
ADD COLUMN GEOMETRY (POINT, 4326
AS

ALTER TABLE
DROP COLUMN

ADD COLUMN GEOMETRY (POINT, 4326
AS

As you see, we can also use custom functions from plugins in it!

Start Categories Training About Talks

https://www.postgresql.org/docs/current/ddl-generated-columns.html
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

Logical Replication

If you read everything in the previous paragraphs, you deserve the Grand Finale!

| explained the superpowers of Postgres logical replication in detail in Push-based Outbox

Pattern with Postgres Logical Replication.

Postgres have a concept called “Write-Ahead Log” (WAL). It is an append-only structure that
records all the operations during transaction processing (Inserts, Updates, Deletes). When
we commit a transaction, the data is firstly appended to the Write-Ahead Log. Then all
operations are applied to tables, indexes, etc. Hence the name “Write-Ahead”: from this
writing data to the log in advance of other changes. So from that perspective, tables and
indexes are just read models for Write-Ahead Log.

Postgres is a rock-solid database with many superb features. One of them is JSON support
we're using in Marten, and the other is logical replication that we’ll look closer at now.

Logical replication takes the traditional approach to the next level. Instead of sending the
raw binary stream of backed-up database files, we're sending a stream of changes that
were recorded in the Write-Ahead Log. It's named logical, as it understands the operations’
semantics, plus the information about the tables it's replicating. It's highly flexible; it can be
defined for one or multiple tables, filter records and copy a subset of data. It can inform
you about changes to specific records. Thus it requires the replicated table to have primary
keys.

We'll use it to publish our notifications from the alerts table into the web UI! I'll use C#, .NET
and SignalR, but you can apply this pattern to other technologies.

We'll subscribe to the changes from the alerts table (vehicle_fuel_efficiency_avg). That's also
why we didn't make it a hypertable. Reminder: it uses partitioning underneath. Postgres,
behind the scenes, is creating the table for each partition. Technically, it's possible to tell
Postgres to replicate data from those tables, but if we add to that dynamic creation etc.,
things are getting harder. That's also why TimescaleDB discourages using logical replication
for hypertables. That may change, as Postgres is investing a lot of effort to make logical
replication and partitioning more aligned and easier to use together. However, for now, let’s
Start Categories Training About Talks -

https://event-driven.io/en/push_based_outbox_pattern_with_postgres_logical_replication/
https://learn.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-7.0
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

focus on our scenario. For our alerting case, it makes perfect sense, as we're interested in
new records, and they're mostly ephemeral notifications.

In C#, using the example code from mentioned article we can do it as follows:

public record FuelEfficiencyAlert(

)i

int Vehicleld,
DateTime StartTime,
DateTime EndTime,
decimal FuelEfficiency

public class FuelEfficiencyAlertsPostgresSubscription

{

}
Start

public static async Task SubscribeAsync(

string connectionString,
IHubContext<FleetManagementHub> hubContext,
CancellationToken ct

const string slotName = "fuel efficiency alerts_slot";
var dataMapper = new FlatObjectMapper<FuelEfficiencyAlert>(NameTransfor

var subscriptionOptions = new SubscriptionOptions(
connectionString,
slotName,
"fuel efficiency alerts pub",
"fuel efficiency alerts",
dataMapper,
CreateStyle.WhenNotExists
)

var subscription = new Subscription();
await foreach (var alert in subscription.Subscribe(subscriptionOptions,

{
await FleetManagementHub.SendFuelEfficiencyAlert (hubContext, (FuelEf

Categories Training About Talks -

https://event-driven.io/en/push_based_outbox_pattern_with_postgres_logical_replication/
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

Behind the scenes, it'll set up the publication for our table, replication slot, and subscribe
for the changes.

Each time a new record appears, we'll get a notification from AsyncEnumerable and
forward it to SignalR. SignalR is a .NETopen-source library that enables sending server-side

notifications to client applications (e.g. web clients).

The hub is implemented and configured simply as:

public class FleetManagementHub : Hub

public static Task SendFuelEfficiencyAlert(IHubContext<FleetManagementHub
SendAsync("FuelEfficiencyAlertRaised"

We're also using:

e Npgsgl, an Open Source Postgres provider for .NET,

e NetTopologySuite a GIS solution for .NET

o their plugins Npgsql.NetTopologySuite and NetTopologySuite.lO.Geo/SON4ST] packages to handle
geometry types and their (de)serialisation.

If you think that's a lot of plumbing, then look from a different angle that all of those tools
are integrating easily with each other and building a great ecosystem of Open Source
tooling. You can build a complex solution based on that without the struggle. It also shows
the power of Postgres and proves its maturity.

Now the simple Web App subscribing to Postgres notifications and pushing it forward
through SignalR can look as:

using
using
using
using
using
using
using

Start Categories Training About Talks

https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/november/csharp-iterating-with-async-enumerables-in-csharp-8
https://learn.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-7.0
https://www.npgsql.org/
https://github.com/NetTopologySuite/NetTopologySuite
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

using JsonOptions = Microsoft.AspNetCore.Http.Json.JsonOptions;

// tell Npgsql that we're using GIS coordinates
NpgsqlConnection.GlobalTypeMapper.UseNetTopologySuite(geographyAsDefault: true)

var builder = WebApplication.CreateBuilder(args);

// Enable CORS for local web app
builder.Services.AddCors(options =>

{
options.AddPolicy("ClientPermission", policy =>
{
policy
WithOrigins("http://localhost:3000")
.AllowAnyMethod()
.AllowAnyHeader()
.AllowCredentials();
});
});

// configure serialisation of GeoJSON
void Configure(JsonSerializerOptions serializerOptions)

{
serializerOptions.Encoder = JavaScriptEncoder.UnsafeRelaxedJsonEscaping;
serializerOptions.NumberHandling = JsonNumberHandling.AllowNamedFloatingPoi
serializerOptions.Converters.Add(new GeoJsonConverterFactory());
serializerOptions.Converters.Add(new JsonStringEnumConverter());

}

builder.Services.Configure<JsonOptions>(o => Configure(o.SerializerOptions));
builder.Services.Configure<Microsoft.AspNetCore.Mvc.JsonOptions>(o => Configure

// Add Postgres Subscription
builder.Services.AddHostedService(serviceProvider =>
{
var logger =
serviceProvider.GetRequiredService<ILogger<BackgroundWorker>>();
var hubContext =
serviceProvider.GetRequiredService<IHubContext<FleetManagementHub>>

return new BackgroundWorker (

Start Categories Training About Talks -

https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

builder.Configuration.GetConnectionString("Postgres")!,
hubContext,
ct

);

// Add SignalR
builder.Services.AddSignalR();

var app = builder.Build();

app.UseCors("ClientPermission");
app.UseAuthorization();

app.UseRouting();
if (app.Environment.IsDevelopment())
{

app.UseSwagger()
.UseSwaggerUI();

}

// map SignalR
app.MapHub<FleetManagementHub>("/hubs/fleet-management");

app.Run();

Getting notifications on React web app

And why not complete that with a quadruple axel? Let's create a React app:

npx create-react-app fleet-management --template typescript

Add SignalR npm package:

npm install @microsoft/signalr

Start Categories Training About Talks

https://www.youtube.com/watch?v=1EOf2D1dLbY
https://create-react-app.dev/
https://www.npmjs.com/package/@microsoft/signalr
https://tailwindcss.com/docs/guides/create-react-app
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

Then if you replace your App.tsx code with:

import "./tailwind.css";

import './App.css';
import { useEffect, useState } from "react";
import { HttpTransportType, HubConnectionBuilder, LogLevel } from "@microsoft/s

type FuelEfficiencyAlert = {
vehicleld: number;
startTime: Date;
endTime: Date;
fuelEfficiency: number;

};

function FleetManagementApp() {
const [alerts, setAlerts] = useState<FuelEfficiencyAlert[]>([]);

useEffect(() => {
// kids, don't do that on prod, be better and use https
const connection = new HubConnectionBuilder()
.configureLogging(LoglLevel.Debug)
withUrl("http://localhost:5000/hubs/fleet-management", {
skipNegotiation: true,
transport: HttpTransportType.WebSockets
})
.withAutomaticReconnect()
ouild();

connection.on("fuelefficiencyalertraised", (alert: FuelEfficiencyAlert) =>
alert.startTime = new Date(alert.startTime);
alert.endTime = new Date(alert.endTime);

setAlerts((prevAlerts) => [...prevAlerts, alert]);

});
connection.start().catch((err) => console.error(err));

return () => {
connection.stop();
}i
},o[1)s

Start Categories Training About Talks -

https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

<div className="mx-auto max-w-5x1 px-6 py-4">
<hl className="text-3x1 font-bold mb-4">Fleet Management App</hl>
{alerts.length === 0 ? (
<div className="text-1g">There are no alerts at the moment.</div>
)
<div className="grid grid-cols-3 gap-4">
{alerts.map((alert) => (
<div
key={'${alert.vehicleld}-${alert.startTime.t0oIS0String()} }
className="bg-white rounded-l1g shadow p-4"

>
<div className="text-1g font-bold mb-2">
Alert for Vehicle {alert.vehicleld}
</div>
<div className="text-sm mb-2">
Start Time: {alert.startTime.tolLocaleString()}
</div>
<div className="text-sm mb-2">
End Time: {alert.endTime.toLocaleString()}
</div>
<div className="text-sm">Fuel Efficiency: {alert.fuelEfficiency}<
</div>
))}
</div>
)}
</div>

);

export default FleetManagementApp;

Et voila! We just made our alerts from the database into the Ul. All without resource-
consuming polling and using fancy but practical Postgres features!

| hope this article shows you how extensible and powerful Postgres is and that it can give
you a lot of fun and real help to deliver your business features in production-grade quality!

Want to see full code? Check my repositories:

e Postgres for .NET developer

e Postgres Outbox Pattern with CDC and .NET

Start

Categories

Training About Talks =

https://github.com/oskardudycz/postgres-for-dotnet-dev
https://github.com/oskardudycz/PostgresOutboxPatternWithCDC.NET
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

Cheers!

Oskar

p.s. Ukraine is still under brutal Russian invasion. A lot of Ukrainian people are hurt,
without shelter and need help. You can help in various ways, for instance, directly helping
refugees, spreading awareness, putting pressure on your local government or companies.
You can also support Ukraine by donating e.g. to Red Cross, Ukraine humanitarian

organisation or donate Ambulances for Ukraine.

If you found this article helpful and want to get notification about the next one, subscribe to
Architecture Weekly.

Join over 2600 subscribers, get the best resources to boost your skills, and stay updated with
Software Architecture trends!

Architecture Weekly

Weekly Software Architecture resources to
boost your knowledge and developer skills.

Type your email... |

SHARE

000

> Oskar Dudycz
woW@ Forover15years, | have been creating IT systems close to the business. | started my career when
StackOverflow didn't exist yet. | am a programmer, technical leader, architect. | like to create well-

thought-out systems, tools and frameworks that are used in production and make people's lives easier. |

Start Categories Training About Talks -

https://www.icrc.org/en/donate/ukraine
https://savelife.in.ua/en/donate/
https://www.gofundme.com/f/help-to-save-the-lives-of-civilians-in-a-war-zone
https://www.architecture-weekly.com/
https://www.architecture-weekly.com/
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

believe Event Sourcing, CQRS, and in general, Event-Driven Architectures are a good foundation by which
this can be achieved.

Event stores are key-value databases, and why that matters
2023-04-07

© License Creative Commons BY-SA 4.0 to Oskar Dudycz 2020 - 2023 -«

Start Categories Training About Talks

https://event-driven.io/en/event_stores_are_key_value_stores/
https://creativecommons.org/licenses/by-sa/4.0/
https://event-driven.io/pl/postgres_superpowers/
https://event-driven.io/en/
https://event-driven.io/en/category/
https://event-driven.io/en/training/
https://event-driven.io/en/about/
https://event-driven.io/en/talks/
https://event-driven.io/en/search/
https://twitter.com/oskar_at_net
https://github.com/oskardudycz
https://fosstodon.org/@oskardudycz
https://www.youtube.com/channel/UC3M4_OgJS4lvZHVDzkOlxIg
https://www.linkedin.com/in/oskardudycz/
https://www.facebook.com/Oskar.At.NET
https://event-driven.io/rss.xml

