
orlp.net Blog Tags Github

2023-03-04

This December I once again did the Advent of Code, in Rust. If you
are interested, my solutions are on Github. I wanted to highlight one
particular solution to the day 2 problem as it is both optimized
completely beyond the point of reason yet contains a useful
technique. For simplicity we’re only going to do part 1 of the day 2
problem here, but the exact same techniques apply to part 2.

We’re going to start off slow, but stick around because at the end you
should have an idea what on earth this function is doing, how it
works, how to make one and why it’s the world’s smallest hash table:

We receive a f ile where each line contains A, B, or C, followed by a
space, followed by X, Y, or Z. These are to be understood as choices
in a game of rock-paper-scissors as such:

The f irst letter (A/B/C) indicates the choice of our opponent, the
second letter (X/Y/Z) indicates our choice. We then compute a score,
which has two components:

1. If we picked Rock we get 1 point, if we picked Paper we get 2
points, and 3 points if we picked Scissors.

2. If we lose we gain 0 points, if we draw we gain 3 points, if we win
we get 6 points.

As an example, if our input f ile looks as such:

The World's Smallest Hash Table

The problem

https://orlp.net/
https://orlp.net/blog
https://orlp.net/tags
https://github.com/orlp
https://adventofcode.com/
https://github.com/orlp/aoc2022/
https://adventofcode.com/2022/day/2
https://en.wikipedia.org/wiki/Rock_paper_scissors
https://orlp.net/blog/worlds-smallest-hash-table/


Our total score would be (2 + 6) + (1 + 0) + (3 + 3) = 15.

A sane solution would verify that indeed our input lines have the
format [ABC] [XYZ], before extracting those two letters. After
converting these letters to integers 0, 1, 2 by subtracting either the
ASCII code for 'A' or 'X' respectively we can immediately calculate
the f irst component of our score as 1 + ours.

The second component is more involved, but can be elegantly solved
using modular arithmetic. Note that if Rock = 0, Paper = 1, Scissor
= 2 then we always have that choice  beats .
Alternatively,  beats , modulo 3:

If we divide the number of points that Advent of Code expects for a
loss/draw/win by three we f ind that a loss is , a draw is  and a win
is  points. From these observations we can derive the following
modular equivalence

To see that it is correct, note that if we drew, ours - theirs is zero
and we correctly get one point. If we add one to ours we change
from a draw to a win, and points becomes congruent with  as
desired. Symmetrically, if we add one to theirs we change from a
draw to a loss, and points once again becomes congruent with  as
desired.

Translated into code we f ind that our total score is

An elegant solution

k + 1 mod 3 k

k k − 1

0 1
2

1 + ours − theirs ≡ points (mod 3).

2

0

https://en.wikipedia.org/wiki/Modular_arithmetic


Instead of ours - theirs we do ours + (3 - theirs) because Rust’s
remainder operator can unfortunately return negative remainders for positive
divisors. One could use rem_euclid instead, but I feel bad for recommending
it as that one is unfortunately defined for negative divisors. I should write a
blog post about this…

We found a neat closed form, but if we were even slightly less
fortunate it might not have existed. A more general method for
solving similar problems would be nice. In this particular instance
that is possible. There are only  input pairs, so we can
simply hardcode the answer for each situation:

Now we can simply get our answer using answers[input]. This
might feel as a bit of a non-answer, but it is a legitimate technique. We
have a mapping of inputs to outputs, and sometimes the simplest or
fastest (in either programmer time or execution time) solution is to
write it out explicitly and completely rather than compute the answer
at runtime with an algorithm.

The above solution works f ine, but it pays a cost for its genericity. It
uses a full-f ledged string hash algorithm, and lookups involve the
full codepath for hash table lookups (most notably hash collision
resolution).

We can drop the genericity for a signif icant boost in speed if we were
to use a perfect hash function. A perfect hash function is a specially
constructed hash function on some set  of values such that each
value in the set maps to a different hash output, without collisions. It
is important to note that we only care about its behavior for inputs in
the set , with a complete disregard for other inputs.

A minimal perfect hash function is one that also maps the inputs to a
dense range of integers . This can be very useful
because you can then directly use the hash function output to index a

A general solution

3 × 3 = 9

Perfect Hash Functions

S

S

[0, 1, … , ∣S∣ − 1]

https://doc.rust-lang.org/std/primitive.i64.html#method.rem_euclid
https://en.wikipedia.org/wiki/Perfect_hash_function


lookup table. This effectively creates a hash table that maps set  to
anything you want. However, strict minimality is not necessary for this
as long as you are okay with wasting some of the space in your
lookup table.

There are fully generic methods for constructing (minimal) perfect
hash functions, such as the “Hash, displace and compress” algorithm by
Belazzougui et. al., which is implemented in the phf crate. However,
they tend to use lookup tables to construct the hash itself. For small
inputs where speed and size is absolutely critical I’ve had good
success just trying stuff. This might sound vague—because it is—so
let me walk you through some examples.

This is where we leave the realm of reasonable solutions for the sake of
education and fun. For simplicity we’re not going to handle things such as
Windows-style newlines (\r\n) or invalid inputs.

As a bit of a hack we can note that each line of our input from the
Advent of Code consists of exactly four bytes. One letter for our
opponent’s choice, a space, our choice, and a newline byte. So we can
simply read our input as a u32, which simplif ies the hash
construction immensely instead of dealing with strings.

For example, consulting the ASCII table we f ind that A has ASCII code
0x41, space maps to 0x20, X has code 0x58 and the newline symbol
has code 0x0a so the input "A X\n" can also simply be viewed as the
integer 0x0a582041 if you are on a little-endian machine. If you are
confused why 0x41 is in the last position remember that we humans
write numbers with the least signif icant digit on the right as a
convention.

Note that on a big-endian machine the order of bytes in a u32 is
f lipped, so reading those four bytes into an integer would result in
the value 0x4120580a. Calling u32::from_le_bytes converts four
bytes assumed to be little-endian to the native integer representation
by swapping the bytes on a big-endian machine and doing nothing on
a little-endian machine. Almost all modern CPUs are little-endian
however, so it’s generally a good idea to write your code such that the
little-endian path is fast and the big-endian path involves a conversion
step, if a conversion step can not be avoided.

Doing this for all inputs gives us the following desired integer →
integer mapping:

S

Reading the input

https://link.springer.com/chapter/10.1007/978-3-642-04128-0_61
https://crates.io/crates/phf
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Endianness


When I said I just try stuff, I mean it. Let’s load our mapping into
Python and write a test:

There are nine inputs, so perhaps we get lucky and get a minimal
perfect hash function right away:

Alas, there are collisions. What if we don’t have to be absolutely
minimal?

That’s not too bad! Only three elements of wasted space. We can
make our f irst perfect hash table by placing the answers in the
correct spots:

Example constructions



Giving the simple mapping:

We stopped here on the f irst modulus that works, which is honestly
f ine in this case because only three bytes of wasted space is pretty
good. But what if we didn’t get so lucky? We have to keep looking.
Even though modulo  has  as its codomain, when applied to
our set of inputs its image might span a smaller subset. Let’s inspect
some:

Unfortunately but also logically, there is an upwards trend of the
maximum index as you increase the modulus. But  also seems
promising, let’s take a look:

Well, well, well, aren’t we lucky? The f irst three indices are unused,
so we can shift all the others back and get a minimal perfect hash
function!

Ironically this one would almost surely perform worse than the previous one
because Rust has to do a bounds check now whereas the previous version is
infallible, and it has an extra subtraction.

Compressing the table

m [0,m)

13

https://en.wikipedia.org/wiki/Codomain
https://en.wikipedia.org/wiki/Image_(mathematics)


In my experience with creating a bunch of similar mappings in the
past, you’d be surprised to see how often you get lucky, as long
as your mapping isn’t too large. As you add more ‘things to try’ to
your toolbox, you also have more opportunities of getting lucky.

Another thing to try is f ixing near-misses. For example, let’s take
another look at our original naive attempt:

Only the last two inputs give a collision. So a rather naive but possible
way to resolve these collisions is to move those to a different index:

Oh look, we got slightly lucky again: both are using the constant 3,
which can be factored out. It can be quite addictive to try out various
permutations of operations and tweaks to f ind these (minimal)
perfect hash functions using as few operations as possible.

So far we’ve just been using the modulo operator to reduce our input
domain to a much smaller one. However, integer division/modulo is
rather slow on most processors. If we take a look at Agner Fog’s
instruction tables we see that the 32-bit DIV instruction has a latency
of 9-12 cycles on AMD Zen3 and 12 cycles on Intel Ice Lake.
However, we don’t need a fully generic division instruction, since our
divisor is constant here. Let’s take a quick look at what the compiler
does for mod 13:

Fixing near-misses

An interlude: integer division

https://www.agner.org/optimize/


It translates the modulo operation into a multiplication with some
shifts / adds / subtractions instead. To see how that works let’s f irst
consider the most magical part: the multiplication by 
followed by the right shift of . That magical constant is actually

 which means it’s computing

To prove that is in fact correct we note that  is divisible by 
allowing us to split the division in the correct result plus an error
term:

Then we inspect the error term and substitute  as an upper
bound to see it never affects the result after f looring:

For more context and references I would suggest “Integer division by
constants: optimal bounds” by Lemire et. al.

After computing  it then computes the actual modulo we
want as  using the identity

It avoids the use of another (relatively) expensive integer
multiplication by using the lea instruction which can compute a +
k*b, where k can be a constant 1, 2, 4, or 8. This is how it computes

:

The LEA instruction was originally intended for array index computations,
because arr[i] is found at address arr_start + sizeof(T)*i, and
sizeof(T) is very often a small power of two.

1321528399
34

⌈2 /13⌉34

q = ​ =⌊
234

x ⋅ ⌈2 /13⌉34

⌋ ⌊x/13⌋.

2 +34 3 13

​ =
234

x ⋅ ⌈2 /13⌉34

​ =
234

x ⋅ (2 + 3)/1334

x/13 + ​.
13 ⋅ 234

3x

x = 232

​ ≤
13 ⋅ 234

3x
​ ≤

13 ⋅ 234

3 ⋅ 232

​ <
13 ⋅ 4

3
1/13.

q = ⌊x/13⌋
m = x − 13q

x mod m = x − ⌊x/m⌋ ⋅ m.

13q

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258644/


We have seen that choosing different moduli works, and that
compilers implement f ixed-divisor modulo using multiplication. It is
time to cut out the middleman and go straight to the good stuff:
integer multiplication. We can get a better understanding of what
integer multiplication actually does by multiplying two integers in
binary using the schoolbook method:

There is a beautiful property here we can take advantage of: all of
the upper bits of the product  for some constant  depend on
most of the bits of . That is, for good choices of the constants  and 
, c*x >> s will give you a result that is wildly different even for small
differences in . It is a strong bit mixer.

Hash functions like bit mixing functions, because they want to be
unpredictable. A good measure of unpredictability is found in the
avalanche effect. For a true random oracle changing one bit in the
input should f lip all bits in the output with 50% probability. Thus
having all your output bits depend on the input is a good property
for a hash function, as a random oracle is the ideal hash function.

So, let’s just try something. We’ll stick with using modulo  for
maximum speed (as those can be computed with a binary AND
instead of needing multiplication), and try to f ind constants  and 
that work. We want our codomain to have size  since that’s the
smallest power of two bigger than . We’ll use a  bit
multiply since we only need 4 bits of output, and the top 4 bits of the
multiplication will depend suff iciently on most of the bits of the

Bit mixing

x ⋅ c c

x c s

x

2k

c s

2 =4 16
9 32 × 32 → 32

https://en.wikipedia.org/wiki/Avalanche_effect


input. By doing a right-shift of  on a u32 result we also get our mod
 for free.

If we needed more than four bits of output, or we couldn’t f ind a constant that
works, I would try a  bit multiply as this gives you more output
bits to work with.

It’s always a bit exciting to hit enter when doing a random search for a
magic constant, not knowing if you’ll get an answer or not. In this
case it instantly printed 0x46685257. Since it was so fast there are
likely many solutions, so we can def initely be a bit greedier and see if
we can get closer to a minimal perfect hash function:

This quickly iterated through a couple of solutions before f inding a
constant that gives a minimal perfect hash function, 0xedc72f12:

Ironically, if we want the optimal performance in safe Rust, we still
need to zero-pad the array to 16 elements so we can never go out-of-
bounds. But if you are absolutely certain there are no inputs other
than the specif ied inputs, and you wanted optimal speed, you could
reduce your memory usage to 9 bytes with unsafe Rust. Sticking with
the safe code option we’ll get:

28
24

32 × 32 → 64



Inspecting the assembly code using the Compiler Explorer it is
incredibly tight now:

You thought 9 bytes was the world’s smallest hash table? We’re only
just getting started! You see, it is actually possible to have a small
lookup table without accessing memory, by storing it in the code.

Code ultimately has to be stored in memory as well, but it saves an
indirection.

A particularly effective method for storing a small lookup table with
small elements is to store it as a constant, indexed using shifts. For
example, the lookup table [1, 42, 17, 26][i] could also be written
as such:

Each individual value f its in 6 bits, and we can easily f it 
bits in a u32. In isolation this might not make sense over a normal
lookup table, but it can be combined with perfect hashing, and can be
vectorized as well.

Unfortunately we have 9 values that each require 5 bits, which doesn’t
f it in a u32… or does it? You see, by co-designing the lookup table
with the perfect hash function we could theoretically overlap the end
of the bitstring of one value with the start of another if we directly use
the hash function output as the shift amount.

Update on 2023-03-05: As tinix0 rightfully points out on reddit, our
values only require 4 bits, not 5. I’ve made things unnecessarily

The World’s Smallest Hash Table

4 × 6 = 24

https://rust.godbolt.org/z/KvP4v187P
https://www.reddit.com/r/programming/comments/11i3hfy/the_worlds_smallest_hash_table/jazrwok/


harder for myself by effectively prepending a zero bit to each value.
That said, you would still need overlapping for f itting  bits
in a u32.

We could also just use a u64 to store the data, but that’s boring and we’re
trying to create the smallest possible hash table here.

We are thus looking for two 32-bit constants c and d such that

Note that the magic shift is now 32 - 5 = 27 because we want 5 bits of
output to feed into the second shift, as .

Luckily we don’t have to actually increase the search space, as we can
construct d from c by just placing the answer bits in the indicated
shift positions. Doing this we can also f ind out whether c is valid or
not by detecting conf licts in whether a bit should be  or  for
different inputs. Will we be lucky?

It takes a second or two, but we found a solution!

4 × 9 = 36

2 =5 32

0 1



We have managed to replace a fully-f ledged hash table with one that
is so small that it consists of 6 (vectorizable) assembly instructions
without any further data.

Wew, that was a wild ride. Was it worth it? Let’s compare four hash-
based versions on how long they take to process ten million lines of
random input and sum all answers.

1. hashmap_str processes the lines properly as newline delimited
strings, as in the general solution.

2. hashmap_u32 still uses a hashmap, but reads the lines and does
lookups using u32s like the perfect hash functions do.

3. phf_lut is the earlier def ined function that feeds a perfect hash
function into a lookup table.

4. phf_shift is our world’s smallest hash function.

The complete test code can be found here. On my 2021 Apple M1
Macbook Pro I get the following results with cargo run --release
on Rust 1.67.1:

Algorithm Time
hashmap_str 262.83 ms
hashmap_u32 81.33 ms
phf_lut 2.97 ms
phf_shift 1.41 ms

So not only is it the smallest, it’s also the fastest, beating the original
string-based HashMap solution by over 180 times. The reason
phf_shift is two times faster than phf_lut on this machine is
because it can be fully vectorized by the compiler whereas phf_lut
needs to do a lookup in memory which is either impossible or

Conclusion

https://gist.github.com/orlp/fdc27b86e658c3b6df709c68ab477a14


relatively slow to do in vectorized code, depending on which SIMD
instructions you have available.

Your results may vary, and you might need RUSTFLAGS='-C target-
cpu=native' for phf_shift to autovectorize.

⟵ Prev post Archive Next post ⟶

https://orlp.net/blog/magical-fibonacci-formulae/
https://orlp.net/blog

