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What does the math tell us about how many job applicants we should look at before hiring
one? While onboarding our new employees, how can ideas from the TCP networking
protocol help us to identify the optimal workload for them? Why would giving employees
unlimited vacation days most likely lead to less vacation being taken? Algorithms to live
By - The Computer Science of Human Decisions gives some fascinating insights into such
questions.
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The �rst edition of this book is from 2016 and the store page on Amazon says that since
2017 it’s already the 12th edition. It is ~370 pages in total but the actual content without
notes etc. is just about 260 pages.
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Book Cover of “Algorithms to Live By -
The Computer Science of Human

Decisions”

Brian Christian is a non-�ction author, speaker,
poet, programmer (e.g. Ruby on Rails contributor),
and researcher. This book and his other books, The
Most Human Human and The Alignment Problem
won several awards.

Tom Grif�ths is a professor of computer science
and psychology and the director of the
Computational Cognitive Science Lab at Princeton
University.

Content and Structure
The authors selected 11 topics from mathematics
and computer science. In each chapter, they
describe practical and relevant challenges from
real life that can be solved with formulas and
algorithms. If you ever asked yourself “What’s the
point? I will never use this in real life!” at school or
university, these are for you!

The authors spend some time explaining
probabilities, trade-offs, complexities, etc. with scienti�c methods, but they don’t go too
deep. This makes the content comprehensible for nearly everyone, especially interested
readers who never studied anything mathematical/technical. I might not be the best
person to judge that because I did study at university, but I am certain that as long as
seeing variable names or diagrams does not straightly trigger fear, you should be able to
understand it and experience fun reading the stories.

Let’s get to the different chapters and their content. This review is much longer than the
others in my blog: The different chapters provide valuable insights, but on mostly
disconnected topics. I did not want to drop any.

1. Optimal Stopping - When to Stop Looking
This chapter is about the stopping problem, which is a classic decision-making problem that
involves choosing the optimal time to stop a process or activity. When you want to �nd the
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Finding the best applicant is hard

best specimen out of an unknown set (in the sense that you don’t know what’s the lower
and upper bounds of “good” are), the Look-Then-Leap rule states that you should set an
amount of time you want to spend looking. This amount of time should then be split into a
looking phase and a leaping phase. In the looking phase, you categorically don’t choose
anyone. After that point, you enter the leaping phase and commit to the next candidate
who outshines the best applicants from the looking phase. The looking phase shall occupy
37% of the time or the number of candidates you can afford to look at. This leads to a 37%
chance of selecting the best (That it’s both 37% is a coincidence that results from the
maths). 37% does not appear great, but is better or worse than the gut feeling?

This strategy can be used in a variety of
interesting situations:

The Secretary Problem: Choosing the best
candidate from a pool of applicants
Selling a house: Determining the best
offer
Finding a partner: Deciding when to
commit to a relationship after a series of
different dates
Selecting a parking lot: Choosing the best
parking space available while trading off
between how far it is from your �at and how often you will have to do another round
around the block
Quitting an activity: Deciding when to stop doing something

2. Explore/Exploit - The Latest vs. the Greatest
This chapter starts with the very concrete question of when you should stick to the
restaurants you know to be good, and when to try out new ones. It turns out that this is the
same problem that casino visitors face in a saloon full of one-armed bandits: Should they
try the same bandit again, or should they switch to another one? It’s also the same problem
that marketing specialists face when they do A/B testing of different wordings or styles of
advertisements (the book mentions that Google tested 41 shades of blue for a toolbar in
2009).

https://en.wikipedia.org/wiki/A/B_testing


Choosing the best option is crucial

The Gittins Index models a strategy for
deciding when to switch from one solution to
another, based on the history of success rates.
The way it works is that each alternative gets
a score. For every decision, the alternative
with the highest score is selected. Based on
success or failure, the score is updated
following a speci�c scheme. This strategy
results in the following behavior:

Untested options are tried if the tested ones go below a success rate of 70%
The strategy is more merciful on failing alternatives in the beginning than on long-
known alternatives

Switching or not switching between alternatives raises questions about other use cases: In
clinical studies, the set of voluntary patients (or not so voluntary if the only cure is still
experimental) is split into a group that gets the new experimental medicine, and another
group that gets placebos. When the study is only half over but the new treatment already
proved very effective, how ethical is it to stick to giving the placebo group placebos
instead of switching over all patients to the seemingly effective treatment? Switching
might however jeopardize the needed statistical backing that is needed to approve the
effectiveness of new treatments.

While the Gittins Index looks at the past, the chapter also introduces the reader to other
strategies as the regret minimization strategy based on so-called Upper Con�dence Bound
algorithms, which take assumptions on the future into account. These give the bene�t of
the doubt a mathematical backing:

Following the advice of these algorithms, you should be excited to meet
new people and try new things — to assume the best about them, in the
absence of evidence to the contrary. In the long run, optimism is the best
prevention for regret.

When looking at the future, it also becomes relevant how much time is left:

https://en.wikipedia.org/wiki/Gittins_index
https://en.wikipedia.org/wiki/Thompson_sampling#Upper-Confidence-Bound_%28UCB%29_algorithms


Depending on the input size, sorting
can become an unwieldy task

Explore when you will have time to use the resulting knowledge and
exploit when you’re ready to cash in. The interval makes the strategy.

3. Sorting - Making Order
This chapter handles sorting theory and discusses the cost of sorting. Sorting costs time
(and comparisons - sometimes these are not free), which is something that computer
science students learn to quantify with complexity theory up and down, typically by
analyzing different sorting algorithms and estimating their costs as a function of the input
size.

Ever thought about how long it would take to
sort a deck of 5 cards? Or 10? Or 20? The cost
of sorting them goes up much steeper than
the deck of cards grows. The book
demonstrates the science behind scale nicely
to non-computer-scientists using more
examples that show how much scale hurts
when sorting inputs that are just too big.
Social hierarchies and pecking orders have
been established with physical �ghting as
sorting methods, which puts the “cost” of
comparison/sorting in a completely different
perspective. Civilization has brought softer and more ef�cient ways to sort with sports and
markets, which resemble crowd algorithms, so to say.

The example of sports is explained more in-depth: Championships and leagues are a way
to sort teams by performance. For sports where one person or team competes version one
other at a time, complex tournament strategies like Single Elimination, Round Robin,
Ladder, and Bracket Tournament strategies are used. Races with many competitors are
simpler, but even these have qualifying events, which sort them before the race which is
supposed to sort them in the �rst place. Each of these strategies resembles different sort
algorithms for different problem sizes, long before sorting algorithms have been
formalized.

https://en.wikipedia.org/wiki/Single-elimination_tournament
https://en.wikipedia.org/wiki/Round-robin_tournament
https://en.wikipedia.org/wiki/Ladder_tournament
https://en.wikipedia.org/wiki/Bracket_(tournament)


A cache tries to predict what
portions of memory will be asked

for to reduce wait times

Even search machines offer some kind of sorting, although this is surprising at �rst: You
enter some search words into Google, and Google presents you not one but many websites
- sorted by relevance.

4. Caching - Forget About It
This chapter motivates the concept of “caching” by explaining memory hierarchies:
Computers have smaller portions of very fast but expensive memory and bigger portions of
memory that is cheap but slow. Users like their computers fast, so engineers have to deal
with the challenge to provide the right data at the right time from limited faster memory.

Phil Karlton, at that time an engineer at Carnegie
Mellon, half-jokingly originated this quote around
1970:

There are only two hard things in Computer
Science: Cache invalidation and naming
things.

The chapter before was all about sorting data to
make speci�c items easier to �nd. This chapter
brings some (half-joking) news for the lazy. With
all the knowledge about caching, it turns out,
that not sorting data can shorten access times a
lot:

Tom’s otherwise extremely tolerant wife objects to a pile of clothes next to
the bed, despite his insistence that it’s in fact a highly ef�cient caching
scheme. Fortunately, our conversations with computer scientists revealed a
solution to this problem too. Rik Belew of UC San Diego, who studies search
engines from a cognitive perspective, recommended the use of a valet
stand.

The mentioned “pile of clothes” in some sense resembles the Least Recently Used caching
scheme:

https://en.wikipedia.org/wiki/Memory_hierarchy
https://www.karlton.org/2017/12/naming-things-hard/
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LRU teaches us that the next thing we can expect to need is the last one we
needed, while the thing we’ll need after that is probably the second-most-
recent one. And the last thing we can expect to need is the one we’ve
already gone the longest without.

The chapter makes interesting detours between principles known from computer science
like Beladys Anomaly, First-In-First-Out (FIFO), and Random Replacement, and shows how
similar these principles are to processes that happen in our brains, like the Human
Forgetting Curve, which is a known phenomenon from neurosciences and psychology.

The science of caching can not only be applied to computers, but also the physical layout
of library rooms, the ordering of clothes in the bedroom, management of post-its, and
shelves, and why/when/how people remember or forget things:

Caching gives us the language to understand what’s happening. We say
“brain fart” when we should really say “cache miss”.

5. Scheduling - First Things First
Beginning with the question of how to schedule tasks in everyday life, the book delves
brie�y into how computers schedule technical tasks, and what to learn from them:

The �rst lesson in single-machine scheduling is literally before we even
begin: make your goals explicit.

As things are generally a bit more arranged in computer memory than in real life, it is
easier to summarize observations and extract guidelines:

Minimizing the sum of completion times leads to a very simple optimal
algorithm called Shortest Processing Time: Always do the quickest task you
can.

After a few motivating examples that relate to real-life tasks, the amount of theory is
ramped up a bit, for example when explaining Earliest Due Date (also called Moore’s

https://en.wikipedia.org/wiki/B%C3%A9l%C3%A1dy%27s_anomaly
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
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Planning is hard (source)

Algorithm) vs Shortest
Processing Time and
discussing such
strategies with real-life
problems (e.g. something
bad happens when a
deadline is crossed).

This example cracked me
up:

There’s an episode of
The X-Files where the
protagonist Mulder,
bedridden and about to be consumed by an obsessive-compulsive vampire,
spills a bag of sun�ower seeds on the �oor in self-defense. The vampire,
powerless against his compulsion, stoops to pick them up one by one, and
ultimately the sun rises before he can make a meal of Mulder. Computer
scientists would call this a “ping attack” or a “denial of service” attack: Give
a system an overwhelming number of trivial things to do, and the
important things get lost in the chaos.

The chapter also goes a meta-level up: A perfect schedule or time plan must re�ect two
things:

[…], preemption isn’t free. Every time you switch tasks, you pay a price,
known in computer science as a context switch.

The little pause between two tasks should be re�ected, otherwise, we drown in task
switching:

Anyone you interrupt more than a few times an hour is in danger of doing
no work at all.

…for which computer science also has a name: Thrashing Phenomenon

https://giphy.com/gifs/funny-how-task-iCFlLMvzDHIk0
https://en.wikipedia.org/wiki/Single-machine_scheduling
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But that is not all, the time in which we are rethinking to create the plan must also be part
of the plan, which is where it gets complicated. In many cases, no perfect plan exists
because whenever a human or a machine waits for external events to happen, they have to
deal with uncertainty and in between do what’s possible, which in turn brings new
problems:

What makes real-time scheduling so complex and interesting is that it is
fundamentally a negotiation between two principles that aren’t fully
compatible. These two principles are called responsiveness and throughput:
How quickly you can respond to things, and how much you can get done
overall.

Most computer scientists already know this example from real-time scheduling lectures at
university, but I think that this is one of the most interesting examples in this chapter:

For the �rst time ever, a rover was navigating the surface of Mars. The $150
million Mars Path�nder spacecraft had accelerated to a speed of 16,000
miles per hour, traveled across 309 million miles of empty space and landed
with space-grade airbags onto the rocky red Martian surface. And now it
was procrastinating.

By procrastinating the author means that the $150 million Path�nder was not responding
to commands from the earth due to a scheduling problem called Priority Inversion. A good
solution for priority inversion is Priority Inheritance: If you realize that employees come
late to very important meetings all the time, do some research to �nd the reason and �nd
out that the coffee machine is so slow that employees end up in endless queues: Increase
the importance of high-quality coffee machine maintenance to the same level like the
most important meetings.

The main message is:

As business writer and coder Jason Fried says, “Feel like you can’t proceed
until you have a bulletproof plan in place? Replace ‘plan’ with ‘guess’ and
take it easy.” Scheduling theory bears this out.

https://en.wikipedia.org/wiki/Priority_inversion
https://en.wikipedia.org/wiki/Priority_inheritance


Marshmallow Torture

6. Bayes’s Rule - Predicting the Future
This chapter begins with a problem that, if it was solved, would make scheduling much
easier: Predicting the future. Statistics and stochastic theory are typically used to model the
certainty of the timing and quantity of events or things. The whole chapter starts with
historic developments on this matter and tries to make it entertaining a bit, but statistics
are still notoriously hard to make look interesting.

The biggest part of the chapter educates (in easy-to-understand ways) about Bayes’ Rule,
Laplace’s Law, the Copernican Principle, normal distribution vs. power-law distribution, and
many others, which is relatively boring. After we read through that part (or skipped it), we
reach my favorite example:

The Marshmallow experiment is widely known:

Each child would be shown a delicious treat, such
as a marshmallow, and told that the adult running
the experiment was about to leave the room for a
while. If they wanted to, they could eat the treat
right away. But if they waited until the
experimenter came back, they would get two treats.
Unable to resist, some of the children ate the treat
immediately. And some of them stuck it out for the
full �fteen minutes or so until the experimenter
returned, and got two treats as promised.

Everyone who knows about this experiment also
knows that long-time observation of these kids
suggested that the ones who are patient enough to
wait to get both marshmallows are also generally more
successful in their later life (which has to be questioned because the study has been
repeated to �nd out that the statistical signi�cance is too weak). The chapter however
continues with an interesting twist, which is by far not as widely known:

[…] the most interesting group comprised the ones in between — the ones
who managed to wait a little while, but then surrendered and ate the treat.

https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Rule_of_succession
https://en.wikipedia.org/wiki/Copernican_principle
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Power_law
https://www.simplypsychology.org/marshmallow-test.html


The researchers tried to �nd out why kids would behave so irrationally - is it a sheer lack of
discipline? They found out that it is more about trust in authorities than discipline:

[…], the kids in the experiment embarked on an art project. The
experimenter gave them some mediocre supplies and promised to be back
with better options soon. But, unbeknownst to them, the children were
divided into two groups. In one group, the experimenter was reliable and
came back with the better art supplies as promised. In the other, she was
unreliable, coming back with nothing but apologies.

When the marshmallow experiment was repeated with children who �rst went through
this experiment, the results showed that the children which were disappointed by the
experimenter would more likely give up in the middle of the marshmallow experiment. I
thought about this a little longer - This is an interesting data point for potential
disadvantages that many (poor/less successful) people might suffer from: Some may have
grown up in environments where they have been disappointed by their parents/authorities
too often and ended up trusting less in such investments.

7. Over�tting - When to Think Less
This chapter was very interesting and captivating read: The phenomenon of over�tting is a
known problem in the domain of arti�cial intelligence/machine learning. Most
explanations are extremely abstract and hard to grasp for outsiders. But actually,
over�tting is very easy to understand when explained through real-life situations:

In the military and in law enforcement, for example, repetitive, rote training
is considered a key means for instilling line-of-�re skills. The goal is to drill
certain motions and tactics to the point that they become totally automatic.
But when over�tting creeps in, it can prove disastrous. There are stories of
police of�cers who �nd themselves, for instance, taking time out during a
gun�ght to put their spent casings in their pockets — good etiquette on a
�ring range.

The effect of this case of over�tting was an unnecessary increase in dead of�cers:

https://en.wikipedia.org/wiki/Overfitting


You become what you train

On several occasions, dead cops were found
with brass in their hands, dying in the middle
of an administrative procedure that had
been drilled into them.

Another example from the same domain goes
like this:

[…] the FBI was forced to change its training after agents were found
re�exively �ring two shots and then holstering their weapon—a standard
cadence in training — regardless of whether their shots had hit the target
and whether there was still a threat. Mistakes like these are known in law
enforcement and the military as “training scars,” and they re�ect the fact
that it’s possible to over�t one’s own preparation.

Over�tting and the dif�culty to set incentives in a way that they don’t end up being
counter-effective have a lot of overlap:

[…] focusing on production metrics led supervisors to neglect maintenance
and repairs, setting up future catastrophe. Such problems can’t simply be
dismissed as a failure to achieve management goals. Rather, they are the
opposite: The ruthless and clever optimization of the wrong thing.

The presented examples were my highlights, but the chapter has some more good ones.
Out of all the theory and real-life examples, the authors extract one piece of good advice
against overthinking:

The greater the uncertainty, the bigger the gap between what you can
measure and what matters, the more you should watch out for over�tting —
that is, the more you should prefer simplicity, and the earlier you should
stop.

8. Relaxation - Let It Slide



Relaxation helps solve hard
problems

At university in group assignments, but also later at work while discussing with colleagues,
I often experienced that perfect is the enemy of the good: The group of students or
colleagues would rather discuss forever while ditching one 80-90% idea after the other,
instead of simply deciding for one and live with a “good” result. (After having the last
chapter also discussing the dif�culty of setting good incentives: Often company culture
makes employees want to avoid making mistakes to not damage their career, so it seems
better to discuss perfect solutions forever.)

This is irrational, but what’s the rational way if a
problem looks too hard to solve? In computer
science, problems are considered “too hard” when
the runtime and/or memory complexity of �nding
the solution has exponential growth (instead of
polynomial, which is considered “easy”). The
chapter contains strategies and algorithms that
do Constraint Relaxation:

But [computer scientists] don’t relax
themselves; they relax the problem.

The �rst example that can be solved faster with
this strategy is the Traveling Salesman Problem: If
you want to visit many places, what is the right
order to visit them that at the same time gives
you the shortest overall travel distance? To really
�nd out, one would have to sum up the travel
distances of all possible paths and then take the
shortest one out of the huge list. Constraint
relaxing algorithms make shortcuts and are hence faster, but don’t guarantee you the
correct result - instead, you get a “good” answer that’s most probably better than following
your gut feeling or just trying randomly. The message is clear:

If we’re willing to accept solutions that are close enough, then even some
of the hairiest problems around can be tamed with the right techniques.

https://en.wikipedia.org/wiki/Perfect_is_the_enemy_of_good
https://en.wikipedia.org/wiki/Relaxation_(approximation)
https://en.wikipedia.org/wiki/Travelling_salesman_problem


This chapter is really short and less technical than the following ones which will pick up
on relaxation again, but it leaves another very interesting life-philosophic inspiration:

One day as a child, Brian was complaining to his mother about all the
things he had to do: his homework, his chores… “Technically, you don’t have
to do anything,” his mother replied. “You don’t have to do what your
teachers tell you. You don’t have to do what I tell you. You don’t even have
to obey the law. There are consequences to everything, and you get to
decide whether you want to face those consequences.” Brian’s kid-mind was
blown. It was a powerful message, an awakening of a sense of agency,
responsibility, moral judgment.

It was probably not clear to both at that moment, but she taught him Lagrangian
Relaxation: Take rules (constraints) and transform them into costs which means taking the
impossible and downgrading it to costly. Sometimes the consequences of breaking some
rules are less bad than not solving some bigger problem.

9. Randomness - When to Leave It to Chance
We usually only leave important things to chance (if at all) when we exhausted all other
strategies, and they did not work out. This chapter illuminates some use cases where
introducing randomness into algorithms makes them perform better than deterministic
algorithms would. Again, let us skip over the rich details and background stories that are
shared about the Monte Carlo Method, Bloom Filters, Hill Climbing, Metropolis Algorithm,
and Simulated Annealing. Instead, let’s have a look at the Miller-Rabin Primality Test and its
signi�cance to the majority of private communication on this planet:

When encrypting messages before sending and
decrypting after receiving them, we typically rely on
asymmetric cryptography. For the user, this means that
encryption and decryption are done with different keys.
Having different keys has the advantage that the key
for encryption can be publicly shared, enabling anyone
to send us an encrypted message that only we can read.
The decryption key is stored and protected in private.
Without going too deep into detail, such algorithms

https://en.wikipedia.org/wiki/Lagrangian_relaxation
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Hill_climbing
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
https://en.wikipedia.org/wiki/Public-key_cryptography


Animated solution of the
Traveling Salesman Problem
with Simulated Annealing

source

rely on the fact that there are no “fast” (following the
notion of fast from the earlier chapters) mathematical
algorithms that can reverse multiplication or
exponentiation of very large numbers if not all
variables are known (i.e. the key that is part of the
calculation). A simple example with small numbers is the question “What are the two prime
factors of the number 15?”. The answer is: 3 * 5 equals 15 as both 3 and 5 are prime and
there is no other combination of prime numbers for which this works, so this is the correct
answer. For small numbers, this is very easy, but for huge numbers, computers would need
centuries - so the designers of algorithms like PGP decided to rely on the security of
messages on this fact: The user’s private key for decryption consists of two huge prime
numbers and must be kept secret. The public key that the user can freely send around
consists of … the product of these numbers. (So if the combination of 3 and 5 would be the
user’s private key, the product 15 would be the public one!) This means that everyone
actually has access to the secret private key. It is nonetheless safe from being misused
because no one can extract the two individual prime numbers from it. This might sound
like a wonky foundation for security for everyone who thought that messages are only
secure if third parties cannot decrypt them, but such a perfect algorithm does not exist:
The best we can get is that it’s only too hard to decrypt a message within the same century.

It does not stop there: Let’s see how the user selects the prime numbers. When running a
mail program or secure messenger for the �rst time, the laptop or cell phone would
automatically generate a key for the user (Often hidden from the user’s sight to improve
the user experience). To get two huge prime numbers, the program rolls the dice to get two
huge numbers and then tests if they are prime. If they are not, it rolls the dice again and
again, until it has two huge prime numbers. Testing if a number is a prime number is
typically done with the Miller-Rabin Primality Test. This test consists of a formula that is
cheap to compute. Its result tells if the number is a strong probable prime or not - it can’t say
if it is a prime, but only if it is likely one. To get to 99.999999...% (and many more nines)
probability of being correct, the algorithm is repeated a lot. Now we (or our messenger
application) know that we have two prime numbers that are most probably prime, and
unlikely to have been chosen by someone else for their keys, so we can now happily
encrypt our most secret and important messages with them. This might again sound like a
wonky foundation, but it’s more probable to end up with insecure keys due to broken
random number generators than due to trusting the probabilities from the encryption

https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Pretty_Good_Privacy
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
https://en.wikinews.org/wiki/Predictable_random_number_generator_discovered_in_the_Debian_version_of_OpenSSL


algorithms. I learned about these things at university in multiple cryptography lectures, but
we were too busy learning how they work to have a look at the history and real-life stories,
so reading about it again from some fresh perspective in this book was enlightening.

The main message of this chapter is:

There is a deep message in the fact that on certain problems, randomized
approaches can outperform even the best deterministic ones. Sometimes
the best solution to a problem is to turn to chance rather than trying to
fully reason out an answer.

10. Networking - How We Connect
After beginning with a historic tour of the content of the �rst telegraph, �rst phone call,
�rst mobile phone call, and �rst text message over the internet, the �rst subsection �nds an
elegant conclusion:

The foundation of human connection is protocol — a shared convention of
procedures and expectations, from handshakes and hellos to etiquette,
politesse, and the full gamut of social norms. Machine connection is no
different. Protocol is how we get on the same page; in fact, the word is
rooted in the Greek protokollon, “�rst glue,” which referred to the outer page
attached to a book or manuscript.

Most of the chapter goes into explaining how switched packet networking works because
all the digital communication on the planet relies on it. The interesting bit of switched
networking is that there is no such thing as a connection like telephone calls used to have,
although video meeting apps tell you the opposite. Ditching dedicated connections gives
more �exibility because computers don’t maintain only a few connections that are used all
the time, but instead maintain many connections which are only used in bursts. The book
shares the amount of technical detail about TCP, Congestion Control, the Byzantine
Generals Problem, and Exponential Backoff that is needed to bridge the ideas behind them
with real-life scenarios that most readers know.

I liked how the authors found something in nature that makes TCP’s �ow control strategy
look very natural:

https://en.wikipedia.org/wiki/Protocol_(diplomacy)
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Network_congestion#Congestion_control
https://en.wikipedia.org/wiki/Two_Generals%27_Problem
https://en.wikipedia.org/wiki/Exponential_backoff


Approach carefully, withdraw quickly (source)

Other animal behavior also evokes
TCP �ow control, with its
characteristic sawtooth. Squirrels
and pigeons going after human
food scraps will creep forward a
step at a time, occasionally leap
back, then steadily creep forward
again.

This strategy is also called Additive
Increase/Multiplicative Decrease due to its nature to increment the send rate in small steps
while the transmission of packets is successful but drop the rate drastically in case of
transmission errors. This way messages are often sent at a slower rate than possible, but
transmission errors are kept to a minimum.

The book suggests the application of the AIMD strategy during the onboarding of new
employees: If it’s unclear how much they will perform in their new environment, increase
their workload in small steps, and as soon as they appear overloaded and make too many
mistakes due to stress, drastically reduce the number again. Midterm, the employee would
work slightly below their maximum and not be over-stressed, which is good for all
participants.

Application of this strategy would also have a positive long-term impact if applied as a
countermeasure against the bad effects of the Peter principle: Employees are promoted
based on their success in previous jobs until they reach a level at which they are no longer
competent, as skills in one job do not necessarily translate to another. The AIMD strategy
suggests that we should be able to demote people again if their last promotion decreased
the overall organization’s strength (it does not appear useful in this case to demote the
person multiple levels lower although AIMD works like that, depending on the metrics).

Two other interesting messages can be extracted from this chapter:

In 2014, for instance, UC Santa Cruz’s Jackson Tolins and Jean Fox Tree
demonstrated that those inconspicuous “uh-huhs” and “yeahs” and “hmms”
and “ohs” that pepper our speech perform distinct, precise roles in
regulating the �ow of information from speaker to listener—both its rate
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and level of detail. Indeed, they are every bit as critical as ACKs are in TCP.
Says Tolins, “Really, while some people may be worse than others, ‘bad
storytellers’ can at least partly blame their audience.”

I liked to read this because it backs something that I always felt in online meetings: If all or
most participants are on mute with disabled webcams, it hurts the effectiveness of online
meetings. Unfortunately, I have seen this online meeting culture a lot. I typically also annoy
the students of my university lecture into enabling their webcams because it enables me to
present them with a better listening experience when I see the students’ faces: If they look
annoyed, I might have been talking about the same thing for too long (thinking that the
majority does not understand it yet) and if they pinch their eyes, I might have skipped over
something too quickly. Giving some kind of talk in front of a screen without faces on it is a
bad experience and makes it harder to give the audience a good experience.

My last highlight of this chapter is the explanation of the technical phenomenon in
computer networks called Buffer Bloat: When network devices that are under heavy load
are con�gured with too large buffers (This is typically not a con�guration knob that is
visible for end-users) to queue up packets that can’t be processed yet, then this often
impacts latencies of TCP network connections negatively. The real-life example that the
authors came up with to explain this to non-engineers is strikingly simple:

When Tom took his daughter to a Cinco de Mayo festival in Berkeley, she set
her heart on a chocolate banana crêpe, so they got in line and waited.
Eventually — after twenty minutes — Tom got to the front of the line and
placed his order. But after paying, they then had to wait forty more minutes
to actually get the crêpe.

The solution for this problem is simple and works both on network devices and in crêpe
shops:

Turning customers away would have made everyone better off—whether
they ended up in a shorter crêpe line or went elsewhere. And wouldn’t have
cost the crêpe stand a dime of lost sales, because either way they can only
sell as many crêpes as they can make in a day, regardless of how long their
customers are waiting.

https://qasm.de/
https://en.wikipedia.org/wiki/Bufferbloat


All possible outcomes of the Prisoner’s Dilemma Game for each player’s
action

This might suggest �nding peace with one or the other dropped packet, and more
generally in life learning to say “no”: If you tend to accept too many requests from others to
not disappoint them, you will end up disappointing them with long wait times anyway.

11. Game Theory - The Minds of Others
Game Theory is all about studying the rules of games and the strategies that players can
follow to get the best results for them. This chapter explains the so-called Nash
Equilibrium, which is a state of any game where all players found the strategy that gives
them the best result from their perspective and everyone sticks to theirs. Depending on the
design of the game, this means anything between good and bad results for all players.

The best
example of
a nash

equilibrium that brings bad results for the players is the Prisoner’s Dilemma: Imagine two
collaborators of a crime are caught but the police do not have enough evidence to convict
them on the principal charge. During the interrogation, each collaborator has the choice to
remain silent or cooperate with the police, which means betraying their collaborator but
getting out of jail immediately. If both collaborators betray each other they will however
both end up in jail for long.

The only good way out of this game for both participants is if they really can trust each
other, but the individual player will get the best “score” for them if they do the betrayal
(going out of jail is still better than sitting for just a few years). The message of the
prisoner’s dilemma is that if you set up a game like this, the mainstream of participants will
converge on the bad behavior because this is the rational choice resulting from
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understanding the game. At this point, it’s easy to blame the players, but the book suggests
blaming the game author for setting up the rules like this in the �rst place.

While the prisoner’s dilemma will most likely be familiar to most readers already, the book
comes up with two other nice and intriguing examples:

Imagine two shopkeepers in a small town. Each of them can choose either
to stay open seven days a week or to be open only six days a week, taking
Sunday off to relax with their friends and family. If both of them take a day
off, they’ll retain their existing market share and experience less stress.
However, if one shopkeeper decides to open his shop seven days a week,
he’ll draw extra customers

The Nash equilibrium of this game is a market where all shops are under pressure to have
open all the time. Depending on the question if this is a good thing for all participants, it
might be necessary to change the rules to relieve the players from pressure.

As intuitive as the market example is, the next example seems counter-intuitive and
surprising at �rst glance. What would happen, if a company gave every one of their
employees unlimited vacation time?

All employees want, in theory, to take as much vacation as possible. But
they also all want to take just slightly less vacation than each other, to be
perceived as more loyal, more committed, and more dedicated (hence more
promotion-worthy). Everyone looks to the others for a baseline, and will
take just slightly less than that. The Nash equilibrium of this game is zero.

This is shocking because it shows how quickly bad scores can result from initially well-
intended rules. The authors call this the Tragedy of the Commons. Stock markets close at
de�ned times as otherwise traders would lose money if they went to bed, leading to many
burned-out traders.

Mechanism Design is then presented as the solution: Game theory asks what behavior will
result from a given set of rules and mechanism design asks what set of rules should be
given for the desired behavior. Mechanism design can help make the game moves that
would otherwise be irrational, rational. Revenge, for example, is a very natural behavior in
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The problem is not the other drivers - it’s the
number of cars

animals and humans, but it is irrational because it just increases the damage and does not
bring anything back to anyone. Still, it seems to be helpful, because the sheer likelihood
that someone would take vengeance if someone else did them badly models a
counterincentive.

The next interesting principle
from game theory research is the
price of anarchy, which measures
how much worse the average
outcome of a game gets for
everyone due to sel�sh behavior.
Games with a high price of
anarchy are hence worthy of being
redesigned to reduce the effect of
the tragedy of the commons.
Calculating the price of anarchy
can even show that some games
don’t necessarily need a redesign,
although one would intuitively
think so: The price of anarchy shows that human traf�c with egoistic drivers is only 33%
worse than a perfect centrally planned traf�c of computer drivers (not including the
reduced number of accidents with injuries/deaths). There are arguments against individual
car traf�c, but they originate more from the scaling perspective than from game theory.

Conclusion - Computational Kindness
My favorite main message of this concluding chapter is, that mathematics and algorithms
show us that we can stop stressing ourselves over always improving in all areas, because
even with optimal strategies, the results are not always optimal, and accepting that is just
rational. This does not mean that one should not try if science says that the probability of
success is too low - but that one should try and simply adjust their expectations.

This chapter also cultivates the principle of being “computationally kind” to others:

We can be “computationally kind” to others by framing issues in terms that
make the underlying computational problem easier. This matters because

https://en.wikipedia.org/wiki/Price_of_anarchy


Overly polite and modest
answers can leave

overwhelmingly many options
to the enquirer

many problems—especially social ones, as we’ve
seen—are intrinsically and inextricably hard. […]
Politely withholding your preferences puts the
computational problem of inferring them on the
rest of the group. In contrast, politely asserting
your preferences (“Personally, I’m inclined
toward x. What do you think?”) helps shoulder
the cognitive load of moving the group toward
resolution.

Life is complicated and full of decisions with no
upfront clear outcome, so relax and follow the �nal
advice:

In the hard cases, the best algorithms are all
about doing what makes the most sense in the least amount of time, which
by no means involves giving careful consideration to every factor and
pursuing every computation to the end. Life is just too complicated for that.

Summary
I think that the people who pro�t most from reading this book are curious non-technical
people, people who work with (software) engineers (e.g. their managers), and early
students: The examples and anecdotes are interesting and vivid, as they back otherwise
boring theory with relevant and partly entertaining real-life scenarios that have strong
potential to motivate further study. Computer scientists will appreciate the examples and
anecdotes because they are entertaining, but also because they help to explain tricky
technical situations to non-technical colleagues with good comparisons when it matters.

While reading about algorithms and strategies and their application to social situations, I
remembered many situations at work where the whole team rendered trapped in escaping
local maximums because solutions worked “well enough” to not change them, although
there were problems that could have been solved by shaking everything up a little (as
suggested by e.g. the simulated annealing algorithm). These were situations where people
would use all their engineering skills to solve technical challenges, but would not use the
same knowledge to challenge their feelings and comfort zone - but that is the game



changer that would help many to be more innovative. A good part of the messages in this
book converges to “stop overthinking, even science says that it’s more rational to try
something new”.

This book is a bridge between the technical and the non-technical worlds. It is not a must-
read but a very good book for everyone who likes a mixture of slight entertainment, story-
telling, and a closer but not too technical look at interdisciplinary connections of life with
mathematics and computer science. If you don’t read it, you might be missing out on some
of the most interesting details of the inner workings of the modern world.


