
Back

Blog post

Supabase Wrappers, a
Postgres FDW framework
written in Rust
2022-12-15 • 17  minute read

Paul Copplestone
CEO and Co-Founder

Bo Lu
Engineering

Oliver Rice
Engineering

https://supabase.com/blog
https://github.com/kiwicopple
https://github.com/burmecia
https://github.com/olirice
https://supabase.com/


Today we're releasing , a

framework for building Postgres Foreign Data Wrappers

(FDW) which connects Postgres to external systems.

Foreign Data Wrappers are a core feature of

PostgreSQL. We've extended this feature to query

other databases or any other external system (including

third-party APIs), using SQL.

We're releasing Wrappers today in Alpha, with support

for  and . Wrappers for Clickhouse,

BigQuery, and Airtable are under development.

Example with Stripe

Let's step through a full example using the Stripe

Wrapper.

Supabase Wrappers

Firebase Stripe

https://github.com/supabase/wrappers
https://supabase.github.io/wrappers/firebase/
https://supabase.github.io/wrappers/stripe/


Connecting to Stripe

First, let's give your Postgres database some

authentication details to access your Stripe account:

Creating a Foreign Table

Now we can map your Stripe data to Foreign Tables,

which are just like normal tables except that the data

exists outside of your database.

create server stripe_server

foreign data wrapper stripe_wrapper

options (api_key 'sk_test_xxx');

-- Create a foreign table for your Stripe produ

create foreign table products (

  id text,

  name text,

  description text,

  default_price text

)



Accessing remote data

After setting up your foreign table, you can query you

Stripe products directly from your database:

Or from your application, using one of our client

libraries:

server my_stripe_server

options ( object 'products' );

-- Fetch all your stripe products in Postgres

select *

from products

limit 10;

import { createClient } from '@supabase/supabas

const SUPABASE_URL = 'https://xyzcompany.supaba

const SUPABASE_KEY = 'public-anon-key'

const supabase = createClient(SUPABASE_URL, SUP

const { data: stripeCustomers, error } = supaba



Note: we kept this example simple, however for API

security and code organization, you should store your

foreign data in a .

Use cases

Once we've added more Wrappers, they enable various

possibilities:

  .from('products')

  .select('id, name, description, default_price

  .limit(10)

separate schema

On-demand Big Data: Query your Data Warehouse

on demand using Wrappers for Clickhouse,

BigQuery, Snowflake, Oracle, and S3.

Simplified Onboarding: Migrate to Postgres from

systems like Firebase, MySQL, and Airtable.

Simplified Development: Create a new Stripe

customer object within a Postgres function.

AI capabilities: Run AI queries from your database

using OpenAI's API.

Caching: use Postgres triggers to insert data into in-

memory databases like Redis.

SRE and DevOps: Query your infrastructure state,

like AWS and DNS records.

Web3 Apps: integrate with IPFS and blockchains like

Ethereum.

Financial Apps: Build Financial applications using

wrappers around Finance APIs.

Community analytics: Analyze your community

engagement with GitHub, Slack, Discord, and

Twitter wrappers.

https://supabase.com/docs/reference/javascript/initializing#api-schemas


On-demand ETL

In their 2017  , researchers from the University of

Bologna investigated an approach to on-demand ETL:

“In traditional OLAP systems, the ETL process loads all

available data in the data warehouse before users start

querying them. In some cases, this may be either

inconvenient (because data are supplied from a

provider for a fee) or unfeasible (because of their size);

on the other hand, directly launching each analysis

query on source data would not enable data reuse,

leading to poor performance and high costs. The

alternative investigated in this paper is that of fetching

and storing data on-demand.”

Their paper outlines the foundation for QETL

(pronounced "kettle"): Query, Extract, Transform, Load.

This differs from a more traditional ETL/ELT approach,

where data is moved from one place to another. In

QETL, the “Query” function allows data engineers to

access data in a remote system even before moving it.

This approach reduces the reliance on data engineering

infrastructure, allowing teams to access operational

insights faster.

The benefits of QETL

We've built upon this concept using PostgreSQL's FDW

system. This a new tool for developers and data

engineers, with several benefits:

paper

Simplicity: the Wrappers API is just SQL, so data

engineers don't need to learn new tools and

languages.

1

On-demand: analytical data is available within your

product without any additional infrastructure, and

2

https://www.sciencedirect.com/science/article/abs/pii/S0169023X1730438X


QETL + Postgres

How does this look in action? Assuming that all of your

analytical data is stored in Snowflake, you could create

a foreign table inside your Supabase database:

Now from your Supabase database you can query your

Snowflake data directly:

You can even join remote data with your local tables to

enrich existing operational data. For example, to figure

the time it takes to retrieve that data is close to

executing a query on the source.

Always in sync: data which isn't moved will always

be in sync. Developers can set up local views which

re-map remote data into clean local schemas.

3

Integrated: large datasets are available within your

application, and can be joined with your

operational/transactional data.

4

Save on bandwidth: only extract/load what you

need.

5

Save on time: avoid setting up additional data

pipelines.

6

Save on Data Engineering costs: less infrastructure

to be managed.

7

create foreign table snowflake.order_history (

  id bigint,

  ts timestamptz,

  event text,

  user_id uuid

)

server my_snowflake_warehouse

options (table 'order_history', rowid_column 'i

select * from snowflake.order_history limit 100



out how many times a user has purchased something

from your store:

We can either run these queries on demand or, for

better query performance, we can run them in the

background (using something like ), and

materialize the data into a local table.

This gives us the basis of QETL:

select

  users.id,

count(order_history.event)

from

snowflake.order_history

join

auth.users on auth.users.id = snowflake.ord

where

  order_history.event = 'purchase' and

  order_history.user_id = '<some_user_id>';

pg_cron

Query: run on-demand SQL queries, directly from

your Postgres database.

https://supabase.com/docs/guides/database/extensions/pgcron


This is a two-way process. It 's equally useful to offload

large datasets from your Postgres database to your

Data Warehouse. With FDWs, this can be as simple as:

On-demand ETL is a strong compliment for current ETL

practices, and another tool in the toolbelt for Data

Engineering and Developers that works with

immediately with tools that interface with Postgres.

Postgres, the everything interface

In a recent Software Engineering  Andy Pavlo

(database Professor at Carnegie Mellon and Co-

Founder of OtterTune), explored the future between

“better databases” and “better interfaces” [00:37 :18]:

“Specialized engines are always going to

outperform general-purpose ones. The question

is whether the specialized engine is going to

have such a significant difference in

performance that it can overcome the

limitations of a general purpose one.

Extract: run SQL select  statements on external

systems, either on demand or on a recurring basis.

Transform: use SQL aggregations and CTEs to

transform the data.

Load: store transformed data into local tables for

faster access.

insert into snowflake.analytics

select * from analytics

where ts > (now() - interval '1 DAY');

episode

https://podcasts.apple.com/us/podcast/software-engineering-daily/id1019576853?i=1000580384354


...

The challenge oftentimes is this: is the benefit

you're getting from a specialized engine because

the Engine is different or the API is different?.”

Andy Pavlo

He goes on to explore the benefits of a Graph database

vs a Relational database.

Our recent release of  closes the gap on the

graph use-case by building a GraphQL API directly into

Postgres as an extension. While a specialized graph

database might provide performance benefits over

Postgres, perhaps one of the largest benefits is simply

the Graph API which makes it easier to reason about the

data.

With the introduction of Wrappers, we're hoping to

close the gap on even more of these type of workloads.

An exciting part of the FDW approach is that it provides

a common interface to the world: SQL. While it has

many shortcomings, SQL is the lingua franca of data.

Postgres' FDWs transform any API into a data set with a

common interface. This “interface aggregator” is

similar to the  of GraphQL engines. The benefit

of embedding this functionality in the database is that

it exists at the lowest level of the tech stack. Everything

that is built on top can leverage it. While Postgres

cannot easily access the functionality of a GraphQL

server, a GraphQL server can easily access the

functionality of Postgres.

The FDW interface also future-proofs Postgres. Instead

of keeping up with the latest technological advances,

pg_graphql

promise

https://github.com/supabase/pg_graphql/
https://medium.com/vicetech/graphql-the-great-aggregator-bcf52fe390d9


Postgres can instead act as an interface whenever they

develop. The recent advance in AI and ML is a great

example of this: AI technology is developing faster than

the time it would take to build a new “AI database”.

With a FDW, Postgres can become the interface to this

technology and many other technological advances in

the future.

Developing Wrappers

Postgres has a builtin “Postgres FDW” allows querying

one Postgres database from another. We've extended

this functionality to support a variety of data sources,

from Data Warehouses to APIs. This release includes

two initial wrappers: Stripe and Firebase

Integration Platform

Self-

hosted select insert update delete

Firebase 🚧 ✅ ✅ 🚧 🚧 🚧

Postgres ✅ ✅ ✅ ✅ ✅ ✅

Stripe 🚧 ✅ ✅ 🚧 🚧 🚧

With several more :

Integration select insert update delete

Airtable ✅ 🚧 🚧 🚧

BigQuery ✅ ✅ ✅ ✅

ClickHouse ✅ ✅ ✅ ✅

Wrappers used , extending it with FDW support. pgx

is a Postgres extension framework written in Rust.

Wrappers is very similar to  or . We

under development

pgx

Steampipe Multicorn

https://github.com/supabase/wrappers/tree/main/wrappers/src/fdw
https://github.com/tcdi/pgx
https://steampipe.io/
https://multicorn.org/


opted to develop our own framework for several

reasons:

Supported types and Push Down

Wrappers  a variety of types, including: bool ,

i8 , i16 , f32 , i32 , f64 , i64 , String , Date ,

Timestamp , and JsonB .

Foreign Data Wrappers have a concept of "push down".

This means that the FDW runs the query on remote data

source. This is useful for performance reasons, as the

remote data source can often perform the query more

efficiently than Postgres. Push down is also useful for

security reasons, as the remote data source can

enforce access control. Limited push-down support has

been added as a Proof of Concept, but this will be a key

focus of Wrappers.

You can follow development of all the Wrappers in the

official .

Next Steps

The current state of FDWs is in disarray. It 's hard to

know which FDWs are supported and functional. We

think there's a benefit to colocating all FDWs in a

single repository using modern tooling. This makes

contributing simpler and maintenance faster.

Wrappers has async support, which enables the

development of RESTful API-based FDWs, like Stripe.

It 's written in Rust, which provides reliable

performance, strong typing, data security, and

“push down” is supported through the framework.

supports

GitHub Repo

https://github.com/supabase/wrappers/blob/83887dcc2ddcf972ca1b1eec4a598cd7bff947de/supabase-wrappers/src/interface.rs#L11
https://github.com/supabase/wrappers


We're not "officially" releasing Wrappers onto the

platform yet, although the brave and curious might be

able to figure out how to use it "unofficially". Caveat

emptor: there will be breaking changes.

We're excited to see what the community does with

Wrappers. We're hoping that Wrappers will help to

accelerate the adoption of Postgres as a data hub. If

you're interested in getting involved or building your

own Wrapper, don't hesitate to jump into the code and

start developing with us.

Supabase Launch Week 6 - Day 4: WrappSupabase Launch Week 6 - Day 4: Wrapp……

More Launch Week 6

Star & Watch the GitHub repo:

github.com/supabase/wrappers

View the documentation:

supabase.github.io/wrappers

Supabase Launch Week: supabase.com/launch-week

Day 1: New Supabase Docs, built with Next.js

https://www.youtube.com/watch?v=QA2qC5F-4OU
https://github.com/supabase/wrappers
https://supabase.github.io/wrappers/
https://supabase.com/launch-week
https://supabase.com/blog/new-supabase-docs-built-with-nextjs


Share this article

Next post

Multi-factor Authentication via Row Level

Security Enforcement
14 December 2022

Related articles

Supabase Wrappers, a Postgres FDW framework written in
Rust

Multi-factor Authentication via Row Level Security
Enforcement

Supabase Storage v2: Image resizing and Smart CDN

New Supabase Docs, built with Next.js

pg_crdt - an experimental CRDT extension for Postgres

View all posts

Day 2: Supabase Storage v2: Image resizing and

Smart CDN

Day 3: Multi-factor Authentication via Row Level

Security Enforcement

Launch Week 6 Hackathon

Who We Hire at Supabase

pg_crdt - an experimental CRDT extension for

Postgres

https://twitter.com/share?text=Supabase%20Wrappers,%20a%20Postgres%20FDW%20framework%20written%20in%20Rust&url=https://supabase.com/blog/postgres-foreign-data-wrappers-rust
https://www.linkedin.com/shareArticle?url=https://supabase.com/blog/postgres-foreign-data-wrappers-rust&title=Supabase%20Wrappers,%20a%20Postgres%20FDW%20framework%20written%20in%20Rust
https://supabase.com/blog
https://supabase.com/blog/storage-image-resizing-smart-cdn
https://supabase.com/blog/mfa-auth-via-rls
https://supabase.com/blog/launch-week-6-hackathon
https://supabase.com/blog/who-we-hire
https://supabase.com/blog/postgres-crdt


Build in a weekend, scale to millions

Start your project

Product

Database

Auth

Functions

Realtime

Storage

Pricing

Beta

Resources

Support

System Status

Integrations

Experts

Brand Assets / Logos

DPA

SOC2

Developers

Documentation

Changelog

Contributing

Open Source

Company

Blog

Careers

Company

Terms of Service

https://app.supabase.com/
https://supabase.com/
https://twitter.com/supabase
https://github.com/supabase
https://discord.supabase.com/
https://youtube.com/c/supabase
https://supabase.com/database
https://supabase.com/auth
https://supabase.com/edge-functions
https://supabase.com/realtime
https://supabase.com/storage
https://supabase.com/pricing
https://supabase.com/beta
https://supabase.com/support
https://status.supabase.com/
https://supabase.com/partners/integrations
https://supabase.com/partners/experts
https://supabase.com/brand-assets
https://supabase.com/legal/dpa
https://supabase.com/legal/soc2
https://supabase.com/docs
https://supabase.com/changelog
https://supabase.com/docs/handbook/contributing
https://supabase.com/oss
https://supabase.com/blog
https://supabase.com/careers
https://supabase.com/company
https://supabase.com/terms


SupaSquad

DevTo

RSS

Privacy Policy

Acceptable Use Policy

Service Level Agreement

Humans.txt

Lawyers.txt

Security.txt

© Supabase Inc

https://supabase.com/supasquad
https://dev.to/supabase
https://supabase.com/rss.xml
https://supabase.com/privacy
https://supabase.com/aup
https://supabase.com/sla
https://supabase.com/humans.txt
https://supabase.com/lawyers.txt
https://supabase.com/.well-known/security.txt

