
Index Posts

November 13th, 2022
8 mins
1510 words, 8.7k chars

eink, raspberrypi, hardware

Building an e-ink weather
display for our home

This post describes the build-process. You can find more about the software in the
GitHub repo.

The final build

W l l k d ' h b f l i h

https://kimmo.blog/
https://kimmo.blog/posts/
https://kimmo.blog/rss.xml
https://github.com/kimmobrunfeldt/eink-weather-display
https://kimmo.blog/content-assets/7/scene.jpg


We almost always want to know today's weather before leaving the apartment.

Often the whole event is quite a hassle: getting our daughter dressed, finding

all our personal outwear, plus trying to find your phone to check the weather.

To make the experience 1% better, the solution obviously needs engineering.

I decided to build a DIY battery powered e-ink weather display for our home.

After researching a while, I ended up with a few goals for the build:

Easily glanceable weather forecast at the heart of our home. Ideally

eliminates one more reason to pick up the phone.

Looks like a "real product". The housing should look professional.

Fully battery-powered. We didn't want a visible cable, and drilling the

cable inside wall wasn't an option.

Always visible and doesn't light up the hallway during evening / night. This

leads to e-ink display.

Primarily for our use case, but with reusability in mind. For example

custom location and timezone. The end result is somewhat tied to Finland

due to using the API of Finnish meteorological institute, but nevertheless

the design goal was kept in mind.

The goals come with a few challenges:

Battery life obviously. Fortunately e-ink displays have an interesting

property: the rendered image stays visible as is even if all cables are

disconnected. It doesn't require any power to keep the image.

Low refresh speed due to battery life constraint. My plan was to refresh the

screen only once or twice a day. That brings interesting design challenges.

How do you indicate that the data is not real time? What should we show

as the day's temperature: average or maximum for the day?

Physical constraints by the frame. Ideally it would be flush to the wall

behind.

The plan

The device should wake up early in the morning, fetch the latest weather

forecast information, update the information to the e-ink display, and go back

to deep sleep until tomorrow.

That way we would have a fresh weather forecast for the day while



That way, we would have a fresh weather forecast for the day while

consuming minimal amount of battery.

Then comes the execution.

Execution

First I designed the weather UI in Figma. This took around 2 days (i.e.

evenings after work).

It was design to the Waveshare 7.5" e-ink display. After ordering one, I started

looking into good fonts to display in a 1-bit (black and white) screen. It was

surprisingly hard to find real 1-bit-screen fonts, so I tested a few sample

renders using regular web fonts with and without post-processing:

https://kimmo.blog/content-assets/7/figma.png
https://www.waveshare.com/7.5inch-e-paper-hat.htm
https://kimmo.blog/content-assets/7/test-anti-alias-disabled.png
https://kimmo.blog/content-assets/7/test-post-process-all-pixels-black.png


I wasn't super satisfied.. the product would be in a central place in our

apartment, so it should look nice.

So... after thinking a bit, I ordered the 10.3" 16-bit display in addition, since it

allows text to be anti-aliased. The end result is way smoother. It would've

been possible to just live with the 1-bit display constraint, but I decided to use

that screen for something else in the future.

On the same day, I also ordered a bunch of other hardware I was expecting to

use: SD card, PiJuice chip and battery, standoff screws, GPIO cables and

adapters. Fortunately a friend of mine had a spare Raspberry PI Zero lying

around which I could use.

After the Figma designs were ready enough, I started creating the HTML page

which is used to render the UI. Many existing projects used lower level

libraries such as Python Imaging Library, but I opted for HTML and CSS. The

development is fast when you can edit the HTML and immediately see the

result without rendering a raster image after each iteration.

The UI development took rougly 1-2 weeks when coding in the evenings and

weekends. Having a flu delayed the build a bit unfortunately.

https://kimmo.blog/content-assets/7/test-post-process-threshold-pixels-black.png


The software vs hardware timing realised like a perfect Gantt Chart. As soon as

I was ready fine-tuning the UI, the hardware arrived to Finland. Nice.

https://kimmo.blog/content-assets/7/web-app-dev.jpg


Even though the development was done with the 1872x1404 display

resolution in mind, I could finally see how it actually looked like. The

Raspberry PI installation and setup took quite some time, but it paid off. It was

absolutely amazing to see the UI appear the first time in the e-ink display.

https://kimmo.blog/content-assets/7/first-display.jpg


Past bedtime

Everything was surprisingly smooth sailing to this point. But then I assembled

all the parts together and realized how small the frame actually is.

I didn't want to build a larger visible casing to the back, so it was time to go

back to the drawing board. I tried to fit everything in the frame by testing all

kinds of combinations. This monstrous GPIO cable + 1-to-2 adapter setup

almost did the job:

https://kimmo.blog/content-assets/7/gpio-too-tall.jpg
https://kimmo.blog/content-assets/7/gpio-cable.jpg


But even after cutting all extra plastic pieces from the cables, it wasn't possible

to mount the frame flush to wall.

Then I realised that the Waveshare demo page featured Windows app that

connected to the controller via the micro-USB interface. Would it be possible

to use that to control the display? There weren't any examples of doing that in

a Linux box though.

Fortunately for me, some great minds had already thought the same. I

connected the controller using USB cables, built the C code in the Raspberry

PI, and tried to clear the display as a test. It worked! What a relief. USB cables

were so much smaller than the 40-pin GPIO cables and headers.

Now that I was confident about the USB-strategy, I needed to get rid of the

GPIO header of the IT851 controller. The chip was still too tall for the frame

with it attached. Fortunately, Helsinki has an amazing library (more like a
library, hacker space, gaming cafe, and a public hangout place combined) where I

could go and desolder the header for free.

https://kimmo.blog/content-assets/7/gpio-cable.jpg
https://twitter.com/faassen/status/1375922965062238208?lang=en


The picture is from the library's electronics room which has cool gear such as laser cutter, 3D
printer, and much more.

d b l h l d h ll b l f ll

https://kimmo.blog/content-assets/7/oodi.jpg


It's mind-boggling how cool Oodi is architecturally but also functionally.

Unfortunately, my soldering skills weren't as mind-boggling. I estimated to my

wife that the job would take around 20 minutes. But even after 1.5 hours of

desoldering and googling how to desolder components, I wasn't able to rip the

header off the chip. My time was up in the soldering lab.

Next strategy was brute force. I took my side cutters and just chopped half of

the header off. All I could hope for was that the chip would work after the

treatment. With the GPIO header chopped in half, all parts finally fit the IKEA

frame nicely!

The unknows in software had been solved, and the final assembly could begin.

I mounted everything to the IKEA frame using screws and hot glue. The

display is super thin, so I avoided placing any screws on the back cover directly

behind the display. The back cover bends slightly so the screws could end up

damaging the panel while moving the product for charging.

Tada! Components were able to almost perfectly fit within the 2.9cm thick

IKEA F O f h 2 9 i l 2 f hi k i l f f h

https://kimmo.blog/content-assets/7/final-build-back.jpg


IKEA Frame. Out of the 2.9cm, approximately 2cm of thickness is left for the

actual components.

I was super worried about component damage after the desoldering amateur

hour, but fortunately everything still worked.

https://kimmo.blog/content-assets/7/thickness.jpg


Finally, I tested a few error cases.

https://kimmo.blog/content-assets/7/error-example.jpg


Those done, it was time to mount the frame on our wall.

https://kimmo.blog/content-assets/7/battery-empty.jpg


https://kimmo.blog/content-assets/7/sunset-product.jpg


https://kimmo.blog/content-assets/7/closeup.jpg
https://kimmo.blog/content-assets/7/scene.jpg


I really like the end result. The IKEA frame has a white cardboard border,

which we ended up cutting to fit the screen. To not have mismatching aspect

ratios of the white cardboard border and the frame itself, I sacrificed a few

vertical pixels of the e-ink display. The white cover board opening is vertically

shorter than what the e-ink display is capable of, leaving some Y-pixels

unused. A bit of a shame, but the overall look is most important!

One option I considered was to saw the frame to be a perfect fit for the screen.

However, it could've lead to a messy end result and it was much easier to

mount everything to the back cover with the extra space.

The project took 3 weeks in calendar time. I was positively surprised about the

quick turnaround time. It didn't happen by chance though. I purposely chose

familiar hardware and software to make the development a easier. The idea

was to actually finish the project, even though lower-level tinkering would've

been educational and beneficial.

That's everything, it was fun!

Hardware list for reference

Raspberry PI Zero W

PiJuice Zero

PiJuice 12000mAh battery. As large as possible to avoid having to charge

the device often.

Waveshare 10.3" 1872x1404 e-ink display with Raspberry PI HAT.

Supports 16 shades of black and white.

Geekworm Raspberry Pi Installation Tool 132 Pcs. For a set of spacers and

screws that fit Raspberry PI projects nicely.

Micro-usb to USB adapter

USB to micro-usb cable

IKEA Hovsta Frame

Misc building items: hot glue, hair band to hold the battery, wall mounting

hooks, small plastic box cut to pieces to support the battery from below,

https://kimmo.blog/content-assets/7/scene.jpg
https://uk.pi-supply.com/products/pijuice-zero
https://uk.pi-supply.com/products/pijuice-12000mah-battery
https://www.waveshare.com/10.3inch-e-paper-hat.htm
https://www.amazon.de/-/en/gp/product/B07MN2GY6Y/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.ikea.com/fi/fi/p/hovsta-kehys-ja-kehyskartonki-koivukuvio-40365762/


and of course duct tape.

Hardware bought but not needed in the end:

GeeekPi Micro Connectors Raspberry Pi 40-pin GPIO 1 to 2 Expansion

Board. To connect PiJuice and e-ink display nicely.

GPIO Cable for Raspberry Pi 40 Pin. To allow a bit more flexibility inside

the build.

Advanced TypeScript:

The ultimate Tailwind typings

Previous

Like the content?
Let me know by subscribing to new
posts.

Email address Subscribe

https://www.amazon.de/-/en/gp/product/B08C4S8NPH/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.de/-/en/gp/product/B08VRJ51T4/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://kimmo.blog/posts/6-advanced-typescript-the-ultimate-tailwind-typings/


kimmo.blog

https://kimmo.blog/
https://github.com/kimmobrunfeldt
https://twitter.com/kimmobrunfeldt

