bugs.xdavidhu.me xdavidhu.me

10 November 2022

Accidental $70k Google Pixel Lock Screen Bypass

I found a vulnerability affecting seemingly all Google Pixel phones where if you gave me any
locked Pixel device, I could give it back to you unlocked. The bug just got fixed in the
November 5, 2022 security update.

The issue allowed an attacker with physical access to bypass the lock screen protections
(fingerprint, PIN, etc.) and gain complete access to the user’s device. The vulnerability is
tracked as CVE-2022-20465 and it might affect other Android vendors as well. You can find my
patch advisory and the raw bug report I have sent to Google at feed.bugs.xdavidhu.me.

CHAPTER 1:
FORGETTING MY SIM PIN

I'm really glad that this bug is getting fixed now. This was the most impactful vulnerability
that I have found yet, and it crossed a line for me where I really started to worry about the
fix timeline and even just about keeping it as a “secret” myself. I might be overreacting, but
I mean not so long ago the FBI was fighting with Apple for almost the same thing.

I found this bug after 24 hours of travelling. Arriving home, my Pixel 6 was on 1% battery. I
was in the middle of sending a series of text messages when it died. I think it was some sort
of joke that I couldn’t properly finish, so it felt pretty awkward. I rushed to the charger and
booted the phone back up.

The Pixel started up and asked for the SIM’s PIN code. I usually knew it, but this time I
couldn’t remember it correctly. I was hoping I might figure it out so I tried a few
combinations, but I ended up entering 3 incorrect PINs, and the SIM card locked itself. It now

needed the PUK code to unlock and work again.

After jumping into my closet and somehow finding the SIM’s original packaging, I scratched off
the back and got the PUK code. I entered the PUK code on the Pixel and it asked me to set a new
PIN. I did it, and after successfully finishing this process, I ended up on the lock screen.

But something was off:

https://bugs.xdavidhu.me/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20465
https://feed.bugs.xdavidhu.me/bugs/0016
https://en.wikipedia.org/wiki/FBI%E2%80%93Apple_encryption_dispute
https://xdavidhu.me/

My hands started to shake at this point. WHAT THE Fx*xK? IT UNLOCKED ITSELF?

After I calmed down a little bit, I realized that indeed, this is a got damn full lock screen
bypass, on the fully patched Pixel 6. I got my old Pixel 5 and tried to reproduce the bug there

as well. It worked too.

Here is the unlock process in action:

Pixel 6 Full Lockscreen Bypass POC

Since the attacker could just bring his/her own PIN-locked SIM card, nothing other than
physical access was required for exploitation. The attacker could just swap the SIM in the
victim’s device, and perform the exploit with a SIM card that had a PIN lock and for which the

attacker knew the correct PUK code.

CHAPTER 3:
GOOGLE’S RESPONSE

I sent in the report. It was I think the shortest report of mine yet. Only took 5 simple steps.

Google (more precisely the Android VRP) triaged & filed an internal bug within 37 minutes. That
was really impressive. Unfortunately, after this, the quality and the frequency of the

responses started to deteriorate.

During the life of this bug, since the official bug ticket was not too responsive, I sometimes
got some semi-official information from Googlers. I actually prefer to only get updates on the
official channel, which is the bug ticket and which I can disclose, but since I was talking

with some employees, I picked up on bits and pieces.

Also, it’s worth mentioning here that before reporting, I checked the Android VRP reward table

which states that if you report a lock screen bypass that would affect multiple or all [Pixel]
devices, you can get a maximum of $100k bounty. Since I ticked all of the required boxes, I

https://www.youtube.com/watch?v=dSgSnYPgzT0
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules

sort of went into this thinking that this bug has a strong chance of actually getting rewarded
$100k.

After it got triaged, there was basically a month of silence. I heared that it might actually
be closed as a duplicate. Apparently somebody already reported it beforehand, even though it
was my report that actually made them take action. Something seemingly went wrong with
processing the original report. Indeed, 31 days after reporting, I woke up to the automated
email saying that “The Android Security Team believes that this is a duplicate of an issue
previously reported by another external researcher.” This was a bit of a signature bug bounty
moment, a bug going from $100k to $O. I couldn’t really do anything but accept the fact that

this bug is now a duplicate and will not pay.

Almost two months have passed after my report, and there was just silence. On day 59 I pinged
the ticket, asking for a status update. I got back a template response saying that they are

still working on the fix.

Fast forward to September, three months after my report. I was in London, attending Google’s
bug hunter event called ESCAL8. The September 2022 patch just came out, I updated my phone and
one night in my hotel room I tried to reproduce the bug. I was hoping that they might have
fixed it already. No. I was still able to unlock the phone.

This hotel room incident really freaked me out. I felt like I worry and care so much more about
the bug getting fixed than Google themselves. Which should not be the case. Even if I am
overreacting. So that night I started reaching out to other Googlers who were at the event with

us.

The next day I ended up explaining my situation to multiple people, and I even did a live demo
with some of the Pixels inside Google’s office. That was an experience. We didn’t have a SIM
ejection tool. First, we tried to use a needle, and somehow I managed to cut my finger in
multiple places, and my hand started bleeding. I had a Google engineer put a band-aid on my
finger. (Who else can say that??) Since the needle didn’t work, we started to ask around and
one very kind woman gave us her earrings to try with. It worked! We swapped the SIMs, and
manage to, with some difficulties, unlock the devices. Now I felt better that people seemed to
care about the issue.

https://www.youtube.com/watch?v=3R_NTvZzPsg

.me

feed.bugs.xdavidhu

https://feed.bugs.xdavidhu.me/bugs/0016

the commit

O Search or jump to... Pull requests Issues Codespaces

aosp-mirror [platform_frameworks_base

mirrored from https://android.googlesource.com/platform/frameworks/base.git

Code Pull requests '3 Actions Security Insights

Do not dismiss keyguard after SIM PUK unlock

After PUK unlock, multiple calls to
KeyguardSecurityContainerController#dismiss() were being called from
the KeyguardSimPukViewController, which begins the transition to the
next security screen, if any. At the same time, other parts of the
system, also listening to SIM events, recognize the PUK unlock and
call KeyguardSecurityContainer#showSecurityScreen, which updates which
security method comes next. After boot, this should be one of PIN,
Password, Pattern, assuming they have a security method. If one of the
first dismiss() calls comes AFTER the security method changes, this is
incorrectly recognized by the code as a successful
PIN/pattern/password unlock. This causes the keyguard to be marked as
done, causing screen flickers and incorrect system state.

The solution: every call to dismiss() should include a new parameter
for the security method used. If there is a difference between this
parameter and the current value in KeyguardSecurityContainerCallback,
ignore the request, as the system state has changed.

Marketplace

https://github.com/aosp-mirror/platform_frameworks_base/commit/ecbed81c3a331f2f0458923cc7e744c85ece96da

Showing 12 changed files with 102 additions and 26 deletions.

packages/SystemUI/src/com/android/keyguard/AdminSecondarylLockScreenController.java

packages/SystemUl
packages/SystemUI/src/com/android/keyguard/KeyguardAbsKeyInputViewController.java
src/com/android/keyguard

AdminSecondaryLockScr... packages/SystemUI/src/com/android/keyguard/KeyguardHostViewController. java

KeyguardAbsKeylnputVie...

KeyguardHostViewContr... packages/SystemUI/src/com/android/keyguard/KeyguardInputViewController.java

KeyguardinputViewContr...

KeyguardPatternViewCon... packages/SystemUI/src/com/android/keyguard/KeyguardPatternViewController.java

KeyguardSecurityCallbac...
) X packages/SystemUI/src/com/android/keyguard/KeyguardSecurityCallback.java
KeyguardSecurityContain...

KeyguardSecurityContain...
packages/SystemUI/src/com/android/keyguard/KeyguardSecurityContainer. java
KeyguardSimPinViewCon...

13 3 3 3 A Y 1 B 1 I Y R

KeyguardSimPukViewCo... . . .
packages/SystemUI/src/com/android/keyguard/KeyguardSecurityContainerCon

tests/src/com/android/keyguard

AdminSecondaryLockScr... [2] packages/SystemUI/src/com/android/keyguard/KeyguardSimPinViewController.java

KeyguardSecurityContain... [<]

packages/SystemUI/src/com/android/keyguard/KeyguardSimPukViewController. java

was called

https://cs.android.com/android/_/android/platform/frameworks/base/+/18b88655a4d3d70733a9d12f740b6790f9061eaa:packages/SystemUI/src/com/android/keyguard/KeyguardSimPukViewController.java;l=280;drc=a9143bf7bdf0b9c8bd5535485aee802ad0ad54be;bpv=0;bpt=0

The Android engineers seemingly decided to refactor the .dismiss() function and made it require
an additional parameter, where the caller can specify what type of security screen it wants to
dismiss. In our case, the PUK component now explicitly calls .dismiss(SecurityMode.SimPuk) , to
only dismiss security screens with the type of SimPuk . If the currently active security screen
is not a SimPuk screen (because maybe some background component changed it, like in our case),
the dismiss function doesn’t do anything.

This seems to me like a pretty elegant and robust solution to defend against this, and future

race conditions as well. I was not expecting to cause this big of a code change in Android with
this bug.

L

https://twitter.com/xdavidhu

