
bugs.xdavidhu.me

Accidental $70k Google Pixel Lock Screen Bypass

I found a vulnerability affecting seemingly all Google Pixel phones where if you gave me any
locked Pixel device, I could give it back to you unlocked. The bug just got fixed in the
November 5, 2022 security update.

The issue allowed an attacker with physical access to bypass the lock screen protections
(fingerprint, PIN, etc.) and gain complete access to the user’s device. The vulnerability is
tracked as CVE-2022-20465 and it might affect other Android vendors as well. You can find my
patch advisory and the raw bug report I have sent to Google at feed.bugs.xdavidhu.me.

C H A P T E R 1 :

F O R G E T T I N G M Y S I M P I N

I’m really glad that this bug is getting fixed now. This was the most impactful vulnerability
that I have found yet, and it crossed a line for me where I really started to worry about the
fix timeline and even just about keeping it as a “secret” myself. I might be overreacting, but
I mean not so long ago the FBI was fighting with Apple for almost the same thing.

I found this bug after 24 hours of travelling. Arriving home, my Pixel 6 was on 1% battery. I
was in the middle of sending a series of text messages when it died. I think it was some sort
of joke that I couldn’t properly finish, so it felt pretty awkward. I rushed to the charger and
booted the phone back up.

The Pixel started up and asked for the SIM’s PIN code. I usually knew it, but this time I
couldn’t remember it correctly. I was hoping I might figure it out so I tried a few
combinations, but I ended up entering 3 incorrect PINs, and the SIM card locked itself. It now
needed the PUK code to unlock and work again.

After jumping into my closet and somehow finding the SIM’s original packaging, I scratched off
the back and got the PUK code. I entered the PUK code on the Pixel and it asked me to set a new
PIN. I did it, and after successfully finishing this process, I ended up on the lock screen.
But something was off:

xdavidhu.me

10 November 2022

https://bugs.xdavidhu.me/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20465
https://feed.bugs.xdavidhu.me/bugs/0016
https://en.wikipedia.org/wiki/FBI%E2%80%93Apple_encryption_dispute
https://xdavidhu.me/

It was a fresh boot, and instead of the usual lock icon, the fingerprint icon was showing. It
accepted my finger, which should not happen, since after a reboot, you must enter the lock
screen PIN or password at least once to decrypt the device.

After accepting my finger, it got stuck on a weird “Pixel is starting…” message, and stayed
there until I rebooted it again.

I mentally noted that this was weird and that this might have some security implications so I
should look at it later. To be honest I don’t really like finding behaviors like this when I am
not looking for them explicitly, because when this happens, I am prone to feeling obsessively
responsible to investigate. I start to feel like I must make sure that there is no serious
issue under the hood that others missed. In this case, well, there was.

C H A P T E R 2 :

W H A T J U S T H A P P E N E D ?

As I promised myself, I started looking at this behavior again the next day. After rebooting
the phone, putting in the incorrect PIN 3 times, entering the PUK, and choosing a new PIN, I
got to the same “Pixel is starting…” state.

I played with this process multiple times, and one time I forgot to reboot the phone, and just
started from a normal unlocked state, locked the device, hot-swapped the SIM tray, and did the
SIM PIN reset process. I didn’t even realize what I was doing.

As I did before, I entered the PUK code and choose a new PIN. This time the phone glitched, and
I was on my personal home screen. What? It was locked before, right?

This was disturbingly weird. I did it again. Lock the phone, re-insert the SIM tray, reset the
PIN… And again I am on the home screen. WHAT?

My hands started to shake at this point. WHAT THE F**K? IT UNLOCKED ITSELF?

After I calmed down a little bit, I realized that indeed, this is a got damn full lock screen
bypass, on the fully patched Pixel 6. I got my old Pixel 5 and tried to reproduce the bug there
as well. It worked too.

Here is the unlock process in action:

Pixel 6 Full Lockscreen Bypass POCPixel 6 Full Lockscreen Bypass POC

Since the attacker could just bring his/her own PIN-locked SIM card, nothing other than
physical access was required for exploitation. The attacker could just swap the SIM in the
victim’s device, and perform the exploit with a SIM card that had a PIN lock and for which the
attacker knew the correct PUK code.

C H A P T E R 3 :

G O O G L E ’ S R E S P O N S E

I sent in the report. It was I think the shortest report of mine yet. Only took 5 simple steps.

Google (more precisely the Android VRP) triaged & filed an internal bug within 37 minutes. That
was really impressive. Unfortunately, after this, the quality and the frequency of the
responses started to deteriorate.

During the life of this bug, since the official bug ticket was not too responsive, I sometimes
got some semi-official information from Googlers. I actually prefer to only get updates on the
official channel, which is the bug ticket and which I can disclose, but since I was talking
with some employees, I picked up on bits and pieces.

Also, it’s worth mentioning here that before reporting, I checked the Android VRP reward table
which states that if you report a lock screen bypass that would affect multiple or all [Pixel]
devices, you can get a maximum of $100k bounty. Since I ticked all of the required boxes, I

https://www.youtube.com/watch?v=dSgSnYPgzT0
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules

sort of went into this thinking that this bug has a strong chance of actually getting rewarded
$100k.

After it got triaged, there was basically a month of silence. I heared that it might actually
be closed as a duplicate. Apparently somebody already reported it beforehand, even though it
was my report that actually made them take action. Something seemingly went wrong with
processing the original report. Indeed, 31 days after reporting, I woke up to the automated
email saying that “The Android Security Team believes that this is a duplicate of an issue
previously reported by another external researcher.” This was a bit of a signature bug bounty
moment, a bug going from $100k to $0. I couldn’t really do anything but accept the fact that
this bug is now a duplicate and will not pay.

Almost two months have passed after my report, and there was just silence. On day 59 I pinged
the ticket, asking for a status update. I got back a template response saying that they are
still working on the fix.

Fast forward to September, three months after my report. I was in London, attending Google’s
bug hunter event called ESCAL8. The September 2022 patch just came out, I updated my phone and
one night in my hotel room I tried to reproduce the bug. I was hoping that they might have
fixed it already. No. I was still able to unlock the phone.

This hotel room incident really freaked me out. I felt like I worry and care so much more about
the bug getting fixed than Google themselves. Which should not be the case. Even if I am
overreacting. So that night I started reaching out to other Googlers who were at the event with
us.

The next day I ended up explaining my situation to multiple people, and I even did a live demo
with some of the Pixels inside Google’s office. That was an experience. We didn’t have a SIM
ejection tool. First, we tried to use a needle, and somehow I managed to cut my finger in
multiple places, and my hand started bleeding. I had a Google engineer put a band-aid on my
finger. (Who else can say that??) Since the needle didn’t work, we started to ask around and
one very kind woman gave us her earrings to try with. It worked! We swapped the SIMs, and
manage to, with some difficulties, unlock the devices. Now I felt better that people seemed to
care about the issue.

https://www.youtube.com/watch?v=3R_NTvZzPsg

me the day after cutting my finger

I put a disclosure deadline for October 15, but the Android VRP team responded by saying that
the bug will not be patched in October yet. They were aiming at December. This seemed way too
far for me, considering the impact. I decided to stick with my October deadline.

After talking to some Googlers about this October deadline, a member of the Android VRP team
personally commented on the bug ticket, and asked me to set up a call to talk about the bug,
and share feedback. We had a Meet call with multiple people, and they were very nice and
listened to my whole story about being in the dark for months, only getting template reponses
(even for the $100k -> $0 duplicate), and overall feeling like I care more about this bug than
Google. They said that the fix is now planned to go out in November, not December. Still, my
deadline was set to October.

Two weeks after our call, I got a new message that confirmed the original info I had. They said
that even though my report was a duplicate, it was only because of my report that they started
working on the fix. Due to this, they decided to make an exception, and reward $70,000 for the
lock screen bypass. I also decided (even before the bounty) that I am too scared to actually
put out the live bug and since the fix was less than a month away, it was not really worth it
anyway. I decided to wait for the fix.

You can read the full conversation on feed.bugs.xdavidhu.me.

All in all, even though this bug started out as a not-too-great experience for me, the hacker,
after I started “screaming” loudly enough, they noticed, and really wanted correct what went
wrong. Hopefully they treated the original reporter(s) fairly as well. In the end, I think
Google did pretty well, although the fix timelime still felt long for me.

But I’ll let you be the judge of it.

https://feed.bugs.xdavidhu.me/bugs/0016

C H A P T E R 4 :

W H A T C A U S E D T H E B U G ?

Since Android is open source, the commit fixing this issue with all of the code changes is
visible publicly:

The first thing that surprised me when I first looked at this commit was the number of files
changed. I previously thought that this bug would only have a simple one-liner fix, removing
the incorrect line of code responsible for triggering an unlock. But it was not that simple:

https://github.com/aosp-mirror/platform_frameworks_base/commit/ecbed81c3a331f2f0458923cc7e744c85ece96da

After reading the commit message and the code changes, I think I was able to get a rough
picture of what happened under the hood. Keep in mind that I am not an Android engineer, so I
want to keep this high level.

Seems like, on Android, there is a concept of a “security screen”. A security screen can be
multiple things. The PIN entry screen, the fingerprint scanning screen, the password entry
screen, or, in our case the SIM PIN and SIM PUK entry screen.

These security screens can be stacked “on top” of each other. So for example when the phone was
locked, and the SIM PIN entry was visible, it had a SIM PIN security screen on top of a
“fingerprint security screen”.

When the SIM PUK was reset successfully, a .dismiss() function was called by the PUK resetting
component on the “security screen stack”, causing the device to dismiss the current one and
show the security screen that was “under” it in the stack. In our example that was the
fingerprint security screen.

Since the .dismiss() function simply dismissed the current security screen, it was vulnerable
to race conditions. Imagine what would have happened if something in the background would have
changed the current security screen before the PUK resetting component got to the .dismiss()
call? Would the PUK component dismiss an unrelated security screen when it finally calls
.dismiss() ?

This seems like exactly what happened. Some other part of the system was monitoring the state
of the SIM in the background, and when it detected a change, it updated which security screen
was currently active. It seems like this background component set the normal e.g. fingerprint
screen as the active security screen, even before the PUK component was able to get to its own
.dismiss() function call. By the time the PUK component called .dismiss() function, it
actually dismissed the fingerprint security screen, instead of just dismissing the PUK security
screen, as it was originally intended. And calling .dismiss() on the fingerprint security
screen caused the phone to unlock.

https://cs.android.com/android/_/android/platform/frameworks/base/+/18b88655a4d3d70733a9d12f740b6790f9061eaa:packages/SystemUI/src/com/android/keyguard/KeyguardSimPukViewController.java;l=280;drc=a9143bf7bdf0b9c8bd5535485aee802ad0ad54be;bpv=0;bpt=0

The Android engineers seemingly decided to refactor the .dismiss() function and made it require
an additional parameter, where the caller can specify what type of security screen it wants to
dismiss. In our case, the PUK component now explicitly calls .dismiss(SecurityMode.SimPuk) , to
only dismiss security screens with the type of SimPuk . If the currently active security screen
is not a SimPuk screen (because maybe some background component changed it, like in our case),
the dismiss function doesn’t do anything.

This seems to me like a pretty elegant and robust solution to defend against this, and future
race conditions as well. I was not expecting to cause this big of a code change in Android with
this bug.



https://twitter.com/xdavidhu

