
In defense of linked lists

<antirez>

antirez 3 hours ago. 18814 views.

A few days ago, on Twitter (oh, dear Twitter: whatever happens I’ll be there as long as
possible – if you care about people that put a lot of energy in creating it, think twice
before leaving the platform). So, on Twitter, I was talking about a very bad implementation
of linked lists written in Rust. From the tone of certain replies, I got the feeling that
many people think linked lists are like a joke. A trivial data structure that is only good
for coding interviews, otherwise totally useless. In a word: the bubble sort of data
structures. I disagree, so I thought of writing this blog post full of all the things I love
about linked lists.

So, get ready to read a sentimental post about a data structure, and don't tell I didn't wa
you.

Linked lists are educational. When your teacher, or the page of a book, or anything that
exposes you for the first time to linked lists shows you this little circle with an arrow
pointing to another circle, something immense happens in your mind. Similar to what happens
when you understand recursion for the first time. You get what data structures made of link
truly are: the triviality of a single node that becomes a lot more powerful and complex once
it references another one. Linked lists show the new programmer fundamental things about
space and time in computation: how it is possible to add elements in a constant time, and ho
order is fundamentally costly, because if you want to insert an element “in place” you have
to go from one node to the other. You immediately start thinking of ways to speed up the
process (preparing you for the next things), and at the same time you understand, deeply,
what O(1) and O(N) really mean.

Linked lists are augmentable. Add a pointer to the previous element, and now it is possible
to go both sides. Add “far” pointers from time to time, and you have a skip list with
completely different properties. Change every node to hold multiple items and your linked
list becomes unrolled, providing very different cache obviousness properties. Linked lists
can be embedded, too. The Linux kernel, for instance, has macros to add a field to any
structures in order to link them together. There is more: linked lists are composable. This
is a bold property: you can split a linked list into two in O(1), and you can glue two linke
lists in O(1) as well. If you make judicious use of this property, interesting things are
possible. For instance, in Redis modules implementing threaded operations, the thread
processing the slow request dealt with a fake client structure (this way there was no
locking, no contention). When the threaded command finally ended its execution, the output
buffer of the client could be glued together to the actual buffer of the real client. This
was easy because the output buffer was represented with a linked list.

Linked lists are useful: Redis can be wrong but both Redis and the Linux kernel can’t They

http://antirez.com/news/138
http://antirez.com/
http://antirez.com/user/antirez

rss feed | twitter | google group | old site

:

Linked lists are useful: Redis can be wrong, but both Redis and the Linux kernel can t. They

are useful because they resemble certain natural processes: adding things in the order they
arrive, or in the reverse order, is natural even in the physical world. Pulling items
incrementally is useful too, as it is moving such items from head to tail, or moving them a
position after the current one.

Linked lists are simple. It is one of those rare data structures, together with binary tree
and hash tables and a few more, that you can implement just from memory without likely
stepping into big errors.

Linked lists are conceptual. A node pointing to itself is the most self centered thing I ca
imagine in computing: an ideal representation of the more vulgar infinite loop. A node
pointing to NULL is a metaphor of loneliness. A linked list with tail and head connected, a
powerful symbol of a closed cycle.

For all those reasons, I love linked lists, and I hope that you will, at least, start smili
at them.

http://antirez.com/rss
http://twitter.com/antirezdotcom
https://groups.google.com/forum/?fromgroups#!forum/redis-db
http://oldblog.antirez.com/

